• 제목/요약/키워드: Smart machine

검색결과 872건 처리시간 0.027초

Advanced Machine Learning Approaches for High-Precision Yield Prediction Using Multi-temporal Spectral Data in Smart Farming

  • Sungwook Yoon
    • International journal of advanced smart convergence
    • /
    • 제13권3호
    • /
    • pp.335-344
    • /
    • 2024
  • This study explores advanced machine learning techniques for improving crop yield prediction in smart farming, utilizing multi-temporal spectral data from drone-based multispectral imagery. Conducted in garlic orchards in Andong, Gyeongbuk Province, South Korea, the research examines the effectiveness of various vegetation indices and cutting-edge models, including LSTM, CNN, Random Forest, and XGBoost. By integrating these models with the Analytic Hierarchy Process (AHP), the study systematically evaluates the factors that influence prediction accuracy. The integrated approach significantly outperforms single models, offering a more comprehensive and adaptable framework for yield prediction. This research contributes to precision agriculture by providing a robust, AI-driven methodology that enhances the sustainability and efficiency of farming practices.

Food Powder Classification Using a Portable Visible-Near-Infrared Spectrometer

  • You, Hanjong;Kim, Youngsik;Lee, Jae-Hyung;Jang, Byung-Jun;Choi, Sunwoong
    • Journal of electromagnetic engineering and science
    • /
    • 제17권4호
    • /
    • pp.186-190
    • /
    • 2017
  • Visible-near-infrared (VIS-NIR) spectroscopy is a fast and non-destructive method for analyzing materials. However, most commercial VIS-NIR spectrometers are inappropriate for use in various locations such as in homes or offices because of their size and cost. In this paper, we classified eight food powders using a portable VIS-NIR spectrometer with a wavelength range of 450-1,000 nm. We developed three machine learning models using the spectral data for the eight food powders. The proposed three machine learning models (random forest, k-nearest neighbors, and support vector machine) achieved an accuracy of 87%, 98%, and 100%, respectively. Our experimental results showed that the support vector machine model is the most suitable for classifying non-linear spectral data. We demonstrated the potential of material analysis using a portable VIS-NIR spectrometer.

지도학습 알고리즘 기반 3D 노지 작물 구분 모델 개발 (Development of 3D Crop Segmentation Model in Open-field Based on Supervised Machine Learning Algorithm)

  • 정영준;이종혁;이상익;오부영;;서병훈;김동수;서예진;최원
    • 한국농공학회논문집
    • /
    • 제64권1호
    • /
    • pp.15-26
    • /
    • 2022
  • 3D open-field farm model developed from UAV (Unmanned Aerial Vehicle) data could make crop monitoring easier, also could be an important dataset for various fields like remote sensing or precision agriculture. It is essential to separate crops from the non-crop area because labeling in a manual way is extremely laborious and not appropriate for continuous monitoring. We, therefore, made a 3D open-field farm model based on UAV images and developed a crop segmentation model using a supervised machine learning algorithm. We compared performances from various models using different data features like color or geographic coordinates, and two supervised learning algorithms which are SVM (Support Vector Machine) and KNN (K-Nearest Neighbors). The best approach was trained with 2-dimensional data, ExGR (Excess of Green minus Excess of Red) and z coordinate value, using KNN algorithm, whose accuracy, precision, recall, F1 score was 97.85, 96.51, 88.54, 92.35% respectively. Also, we compared our model performance with similar previous work. Our approach showed slightly better accuracy, and it detected the actual crop better than the previous approach, while it also classified actual non-crop points (e.g. weeds) as crops.

SMART CARD 기반 생체인식 사용자 인증시스템의 구현 (Implementation for the Biometric User Identification System Based on Smart Card)

  • 주동현;고기영;김두영
    • 융합신호처리학회논문지
    • /
    • 제5권1호
    • /
    • pp.25-31
    • /
    • 2004
  • 본 논문은 Smart Card의 일종인 비 접촉 IC 카드의 내부 데이터를 사용하여, 생체인식 요소인 홍채폐턴을 이용한 사용자 인증 시스템의 인증률 향상을 도모한 연구이다. 먼저, CCD 카메라로 입력 받은 안구영상에서 홍채영역을 추출하고, GHA(Generalized Hebbian Algorithm)웨이트를 이용하여 PCA(Principal Component Analysis) Coefficient를 Smart Card 내부에 저장한다. 사용자 인증시에는 실시간으로 입력되는 사용자의 생체 인식 정보와 카드 내부의 사용자 생체 인식 정보를 비교하여, 동일한 경우에 그 인식 정보를 SVM(Support Vector Machine)을 사용하여 분류하였다. 본 논문에서는 실시간 테스트 실험 결과 이전에 개발된 시스템보다 사용자의 인증률이 우수해 짐을 보였다.

  • PDF

머신러닝 기반 스마트팜의 IoT 데이터 처리 모델 (IoT Data Processing Model of Smart Farm Based on Machine Learning)

  • 정윤수
    • 산업과 과학
    • /
    • 제1권2호
    • /
    • pp.24-29
    • /
    • 2022
  • 최근 농업 경랭력 향상 및 비용 절감을 최소화하기 위해서 IoT 기술을 다양한 농장에 적용하는 스마트 팜 연구가 활발하게 진행되고 있다. 특히, IoT 장치를 통해 스마트 팜 주변의 환경정보 데이터를 원격 제어할 수 있는 방법들이 연구되고 있다. 본 논문에서는 스마트 팜에서 수집된 환경정보 데이터를 머신러닝 기반으로 실시간 모니터링하여 최적의 생육환경을 유지할 수 있는 모델을 제안한다. 제안 모델은 머신러닝 기술을 사용하기 때문에 풍부한 빅데이터 확보 방안을 통해 지속적인 데이터 수집이 가능하도록 다중 블록체인으로 환경 정보를 묶는다. 또한, 제안 모델은 수집된 환경 정보 데이터를 가중치와 상관관계 지수를 이용하여 우선 순위에 따라 선택(또는 바인딩)적으로 지정한다. 마지막으로, 제안 모델은 실시간으로 환경 정보를 처리할 수 있도록 환경 정보 처리 비용을 최소한으로 n-계층으로 확장할 수 있도록 한다.

SVM 이용한 다중 생체신호기반 온열질환 감지 스마트 안전모 개발 (Smart Helmet for Vital Sign-Based Heatstroke Detection Using Support Vector Machine)

  • 장재민;이강호;주수빈;권오원;이학;이동규
    • 센서학회지
    • /
    • 제31권6호
    • /
    • pp.433-440
    • /
    • 2022
  • Recently, owing to global warming, average summer temperatures are increasing and the number of hot days is increasing is increasing, which leads to an increase in heat stroke. In particular, outdoor workers directly exposed to the heat are at higher risk of heat stroke; therefore, preventing heat-related illnesses and managing safety have become important. Although various wearable devices have been developed to prevent heat stroke for outdoor workers, applying various sensors to the safety helmets that workers must wear is an excellent alternative. In this study, we developed a smart helmet that measures various vital signs of the wearer such as body temperature, heart rate, and sweat rate; external environmental signals such as temperature and humidity; and movement signals of the wearer such as roll and pitch angles. The smart helmet can acquire the various data by connecting with a smartphone application. Environmental data can check the status of heat wave advisory, and the individual vital signs can monitor the health of workers. In addition, we developed an algorithm that classifies the risk of heat-related illness as normal and abnormal by inputting a set of vital signs of the wearer using a support vector machine technique, which is a machine learning technique that allows for rapid binary classification with high reliability. Furthermore, the classified results suggest that the safety manager can supervise the prevention of heat stroke by receiving feedback from the control system.

Context-Aware Security System for the Smart Phone-based M2M Service Environment

  • Lee, Hyun-Dong;Chung, Mok-Dong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제6권1호
    • /
    • pp.64-83
    • /
    • 2012
  • The number of smart phone users is rapidly growing due to recent increase in wireless Internet usage, development of a wide variety of applications, and activation of M2M (Machine to machine) services. Although the smart phone offers benefits of mobility and convenience, it also has serious security problems. To utilize M2M services in the smart phone, a flexible integrated authentication and access control facility is an essential requirement. To solve these problems, we propose a context-aware single sign-on and access control system that uses context-awareness, integrated authentication, access control, and an OSGi service platform in the smart phone environment. In addition, we recommend Fuzzy Logic and MAUT (Multi-Attribute Utility Theory) in handling diverse contexts properly as well as in determining the appropriate security level. We also propose a security system whose properties are flexible and convenient through a typical scenario in the smart phone environment. The proposed context-aware security system can provide a flexible, secure and seamless security service by adopting diverse contexts in the smart phone environment.

Deep Q-Network를 이용한 준능동 제어알고리즘 개발 (Development of Semi-Active Control Algorithm Using Deep Q-Network)

  • 김현수;강주원
    • 한국공간구조학회논문집
    • /
    • 제21권1호
    • /
    • pp.79-86
    • /
    • 2021
  • Control performance of a smart tuned mass damper (TMD) mainly depends on control algorithms. A lot of control strategies have been proposed for semi-active control devices. Recently, machine learning begins to be applied to development of vibration control algorithm. In this study, a reinforcement learning among machine learning techniques was employed to develop a semi-active control algorithm for a smart TMD. The smart TMD was composed of magnetorheological damper in this study. For this purpose, an 11-story building structure with a smart TMD was selected to construct a reinforcement learning environment. A time history analysis of the example structure subject to earthquake excitation was conducted in the reinforcement learning procedure. Deep Q-network (DQN) among various reinforcement learning algorithms was used to make a learning agent. The command voltage sent to the MR damper is determined by the action produced by the DQN. Parametric studies on hyper-parameters of DQN were performed by numerical simulations. After appropriate training iteration of the DQN model with proper hyper-parameters, the DQN model for control of seismic responses of the example structure with smart TMD was developed. The developed DQN model can effectively control smart TMD to reduce seismic responses of the example structure.

DDNS를 이용한 개인 에너지 관리 시스템 구현 (Implementation of Personal Energy Management System Using DDNS)

  • 정낙주;이춘희;정희경
    • 한국정보통신학회논문지
    • /
    • 제19권6호
    • /
    • pp.1321-1326
    • /
    • 2015
  • 지속적인 전력수급의 불안과 이에 따른 정부의 에너지관리 정책의 변화로 인해 효율적인 에너지 관리를 위한 에너지 관리 시스템 에 대한 관심과 수요는 공공기관이나 빌딩뿐만 아니라 가정에까지 확대되고 있다. 그러나 가정내 전기 소비 장치에 대한 관리는 신규 건축물에 적용되거나 가정 내 운용제품에 기반한 별도의 서비스 제공자를 통해서 주로 운용 된다. 본 논문에서는 가정 내 인터넷서비스 제공을 위해 설치되어 있는 유무선 공유기와 DDNS(Dynamic Domain Name Service) 를 이용하여 가정 내 전기 소비 장치의 원격제어 및 모니터링을 위한 Presonal Energy Management System 을 구현하는 방법을 제안하고자 한다.

Smart Thermostat based on Machine Learning and Rule Engine

  • Tran, Quoc Bao Huy;Chung, Sun-Tae
    • 한국멀티미디어학회논문지
    • /
    • 제23권2호
    • /
    • pp.155-165
    • /
    • 2020
  • In this paper, we propose a smart thermostat temperature set-point control method based on machine learning and rule engine, which controls thermostat's temperature set-point so that it can achieve energy savings as much as possible without sacrifice of occupants' comfort while users' preference usage pattern is respected. First, the proposed method periodically mines data about how user likes for heating (winter)/cooling (summer) his or her home by learning his or her usage pattern of setting temperature set-point of the thermostat during the past several weeks. Then, from this learning, the proposed method establishes a weekly schedule about temperature setting. Next, by referring to thermal comfort chart by ASHRAE, it makes rules about how to adjust temperature set-points as much as low (winter) or high (summer) while the newly adjusted temperature set-point satisfies thermal comfort zone for predicted humidity. In order to make rules work on time or events, we adopt rule engine so that it can achieve energy savings properly without sacrifice of occupants' comfort. Through experiments, it is shown that the proposed smart thermostat temperature set-point control method can achieve better energy savings while keeping human comfort compared to other conventional thermostat.