International journal of advanced smart convergence
/
제13권2호
/
pp.265-275
/
2024
Smart factory is a remarkable development from traditional manufacturing systems to data-based smart manufacturing systems that can connect and process data continuously, collected from machines, production equipment to production and business processes, capable of supporting workers in making decisions or performing work automatically. Smart factory is the key and center of the fourth industrial revolution, combining improvements in traditional manufacturing activities with digital technology to help factories achieve greater efficiency, contributing to increased revenue and reduce operating costs for businesses. Besides, the importance of smart factories is to make production more quality, efficient, competitive and sustainable. Businesses in Vietnam are in the process of learning and applying smart factory models. However, the number of businesses applying the pine factory model is still limited due to many barriers and difficulties. Therefore, in this paper we conduct a survey to assess the needs and current situation of businesses in applying smart factories and propose some specific solutions to develop and promote application of smart factory model in Vietnamese businesses.
Recently much attention in building smart factory has been dramatically increased. Despite the growing interest in smart factory, few practical guidelines exist how to successfully build smart factory. The purpose of this study is to postulate and develop a road map for building successful smart factory. To enhance mundane realism, we design the road map through University-Industry research collaboration. Specifically, drawing analysis of University-Industry research collaboration, we design a prototype and detailed road map or building successful smart factory. Moreover, we apply the road map into actual smart factory development. By doing so, we successfully prove the effectiveness of the road map. Therefore, this study provides the valuable guidelines and directions to build a successful smart factory. Ultimately this study is able to help a variety of factories which establish and implement smart factory. Further, we hope that this study will be placed to be an important foundation research on behalf of smart factory building.
Smart factories can be defined as intelligent factories that produce products through IoT-based data. In order to build and operate a smart factory, various new technologies such as CPS, IoT, Big Data, and AI are to be introduced and utilized, while the implementation of a MES system that accurately and quickly collects equipment data and production performance is as important as those new technologies. First of all, it is very essential to build a smart factory appropriate to the current status of the company. In this study, what are the essential prerequisite factors for successfully implementing a smart factory was investigated. A case study has been carried out to illustrate the effect of implementing ERP and MES, and to examine the extensibilities into a smart factory. ERP and MES as an integrated manufacturing information system do not imply a smart factory, however, it has been confirmed that ERP and MES are necessary conditions among many factors for developing into a smart factory. Therefore, the stepwise implementation of intelligent MES through the expansion of MES function was suggested. An intelligent MES that is capable of making various decisions has been investigated as a prototyping system by applying data mining techniques and big data analysis. In the end, in order for small and medium enterprises to implement a low-cost, high-efficiency smart factory, the level and goal of the smart factory must be clearly defined, and the transition to ERP and MES-based intelligent factories could be a potential alternative.
The South Korean government is actively assisting the supply of the smart factory solutions to SMEs (Small & Medium-sized Enterprises) according to its manufacturing innovation 3.0 policy for the smart manufacturing as the 4th industrial revolution era unfolds. This study analyzed the impacts of the smart factory solutions, which have been supplied by the government, on the companies performances. The effects of the level of smart factory and the operation capabilities for the smart factory solutions on company performances, and the mediating effects of manufacturing capabilities have been analyzed using SPSS and AMOS. The data for this survey-based study were collected from the SMEs which implemented the smart factory solutions since 2015. The results show that the level of smart factory solutions adopted and operation capabilities for the smart factories do not have direct effects on the company performances, but their mediating effects on the manufacturing capabilities matter and the manufacturing capabilities effect directly on the company performances. In addition significant factors boosting the operation capability for the smart factory and the levels of the smart factory solutions are identified. Finally, the policy direction for enhancing the smart factory effects is presented, and the future research directions along with the limitations are suggested.
Purpose This study investigates the impact of organizational characteristics on organizational performance through case studies of smart factory implementation in the context of Korean small and medium Enterprises (SMEs). To achieve this goal, this study adopts the smart factory index of KOSMO (Korea Smart Manufacturing Office) established by Korean Ministry of SMEs and Startups. We visited 3 firms implemented smart factory projects. This study presents the results of field study in detail with evaluation criteria on how organizational competences like AI technology adoption and facility automation can be exploited to positively influence organizational performance through smart factory implementation. Design/methodology/approach There are not so many results of empirical studies related to smart factories in Korea. This is because organizational support and user involvement are required for facility AI platform service beyond factory automation after the start of the 4th Industrial Revolution. Korean government's KOSMO (Korean Smart Manufacturing Office) has developed and proposed a level measurement index for smart factory implementation. This study conducts case studies based on the level measurement method proposed by KOSMO in the process of conducting case studies of three companies belonging to the root and mechanic industries in Korea. Findings The findings indicate that organizational competences, such as facility AI platform adoption and user involvement, are antecedents to influence smart factory implementation, while smart factory implementation has significant relationship with organizational performance. This study provides a better understanding of the connection between organizational competences and organizational performance through smart factory case studies. This study suggests that SMEs should focus on enhancing their organizational competences for improving organizational performance through implementing smart factory projects.
Purpose: This paper aims to propose a practical strategy for smart factories and a step-by-step quality strategy according to the maturity of smart factory construction. Methods: The characteristics, compositional requirements, and diagnosis system are examined for smart factories through theoretical considerations. Several cases of implementing smart factory are studied considering the company maturity level from the aspect of the smartness concept. And specific quality techniques and innovation activities are carefully reviewed. Results: The maturity level of smart factory was classified into five phases: 1) ICT non-application, 2) basic, 3) intermediate 1, 4) intermediate 2, 5) advanced level. A five-step quality strategy was established on the basis of case studies; identify, measure, analyze, optimize, and customize. Some quality techniques are introduced for step-by-step implementation of quality strategies. Conclusion: To build a successful smart factory, it is necessary to establish a quality strategy that suits the culture and size of the company. The quality management strategy proposed in this paper is expected to contribute to the establishment of appropriate strategies for the size and purpose of the company.
Recently, smart factories have gained significant importance since the development of the fourth industrial revolution and the rise of global industrial competition. Therefore, the industries' survival to meet the global market trends requires accurate technological planning. Although, different works are available to investigate forecasting technologies and their influence on the smart factory. However, little significant work is available yet on the analysis of technological trends concerning the smart factory, which is the core focus herein. This work was performed to analyze the technological trends of the smart factory, followed by a detailed investigation of recent research hotspots/frontiers in the field. A well-known topic modeling technique, namely Latent Dirichlet Allocation (LDA), was employed for this study described above. The technological trends were further strengthened with the in-depth analysis of a smart factory-based case study. The findings produced the technological trends which possess significant potential in determining the technological strategies. Moreover, the results of this work may be helpful for researchers and enterprises in forecasting and planning future technological evolution.
International journal of advanced smart convergence
/
제11권1호
/
pp.42-47
/
2022
As smart factory is the factory which produces the products according to the customer's diverse demand and the changing conditions in it, it can be characterized by flexible production, dynamic reconstruction, and optimized production environment. To implement these characteristics, many kind of configuration elements in the smart factory should be connected to and communicated with each other. So the network is responsible for playing this role in the smart factory. As SDN (Software Defined Network) is the technology that can dynamically cope with the explosive increasing data amount and the hourly changing network condition, it is one of network technologies that can be applied to the smart factory. In this paper, we address SDN function and operation, SDN model suitable for the smart factory, and then performs the simulation for measuring this model.
A new paradigm based on distributed manufacturing services is emerging. This paradigm shift can be realized by smart functions and smart technologies such as Cyber Physical System (CPS), Artificial Intelligence (AI), and Cloud Computing. Most architectures define stack levels from Level 0 (equipment) to Level 4 (business area) and specify the services to be provided between them. Because of their a rough technical specification, there is a limitation on how to actually utilize a technology to actually implement a smart factory service with this architecture. In this paper, we propose a smart factory architecture that can be utilized directly from the perspective of a smart service system by making the use of System Engineering Process and System Modeling Language (SysML).
Purpose This study examines the roles of firm-level smart factory implementation in the relationship between organizational competence and organizational performance in the context of Korean small and medium Enterprises (SMEs). To achieve this goal, this study presents and empirically tests a research model with evaluation data conducted by industrial experts on how organizational competence can be exploited to positively influence organizational performance through smart factory implementation. Design/methodology/approach Organizational competence are based on the research construct developed by Odważny et al.(2018). Research constructs on smart factory are based on the measurement model developed by Korea Technology and Information Promotion Agency for Korea small and medium Enterprises (TIPA) (2020) and organizational performance are based on the performance construct developed by Kwon(2019). To complete the investigation, we collected 31 firm data conducted by industrial experts in Korea from Dec 2018 to Dec 2020. Most of firm was implemented officially by government budget granted for smart factory of Korea SMEs. To test our hypotheses, partial least squares (PLS) method was employed. Findings The findings indicate that organizational competence is antecedent to influence smart factory implementation, while smart factory implementation has significant relationship with organizational performance. This study provides a better understanding of the connection between organizational competence and organizational performance through smart factory implementation. So companies should focus on enhancing organizational competence and implementing smart factory to obtain sustainable competitiveness.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.