• Title/Summary/Keyword: Smart charging

Search Result 154, Processing Time 0.022 seconds

An Analysis of Voltage Multiplier Circuits for Smart Phone RF Wireless Charging (스마트폰 RF 무선충전을 위한 전압 체배기 회로 분석)

  • Son, Myung Sik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.2
    • /
    • pp.29-33
    • /
    • 2021
  • A 5.8-GHz 1W wireless power transmission system was used for charging a smart phone. The voltage of one RF power receiver with antenna was not enough for charging. Several power receivers for charging a smart phone was connected serially. The voltage of several RF power receivers are highly enough for charging a smart phone within 50cm. However, the lack of current from small capacitances of RF-DC converters is not suitable for charging smart phone. It means very long charging time. In this paper, the voltage multiplier circuits for RF-DC converters were analyzed to increase the current and voltage at the same time to reduce the charging time in smartphone RF wireless charging. Through the analysis of multiplier circuits, the 7-stage parallel multiplier circuit with voltage-doubler units are suitable for charging the smartphone, which supplies 5V and 700mA at 3V@5.8GHz.

Mechanism Development and Position Control of Smart Buoy Robot

  • Park, Hwi-Geun;Kim, Hyun-Sik
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.4
    • /
    • pp.305-312
    • /
    • 2021
  • There is a gradual increase in the need for energy charging in marine environments because of energy limitations experienced by electric ships and marine robots. Buoys are considered potential energy charging systems, but there are several challenges, which include the need to maintain a fixed position and avoid hazards, dock with ships and robots in order to charge them, be robust to actions by birds, ships, and robots. To solve these problems, this study proposes a smart buoy robot that has multiple thrusters, multiple docking and charging parts, a bird spike, a radar reflector, a light, a camera, and an anchor, and its mechanism is developed. To verify the performance of the smart buoy robot, the position control under disturbance due to wave currents and functional tests such as docking, charging, lighting, and anchoring are performed. Experimental results show that the smart buoy robot can operate under disturbances and is functionally effective. Therefore, the smart buoy robot is suitable as an energy charging system and has potential in realistic applications.

A Study on EV Charging Scheme Using Load Control

  • Go, Hyo-Sang;Cho, In-Ho;Kim, Gil-Dong;Kim, Chul-Hwan
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.5
    • /
    • pp.1789-1797
    • /
    • 2017
  • It is necessary to charge electric vehicles in order to drive them. Thus, it is essential to have electric vehicle charging facilities in place. In the case of a household battery charger, the power similar to that consumed by a household with a basic contract power of 3kW is consumed. In addition, many consumers who own an electric vehicle will charge their vehicles at the same time. The simultaneous charging of electric vehicles will cause the load to increase, which then will lead to the imbalance of supply and demand in the distribution system. Thus, a smart charging scheme for electric vehicles is an essential element. In this paper, simulated conditions were set up using real data relating to Korea in order to design a smart charging technique suitable for the actual situation. The simulated conditions were used to present a smart charging technique for electric vehicles that disperses electric vehicles being charged simultaneously. The EVs and Smart Charging Technique are modeled using the Electro Magnetic Transients Program (EMTP).

Study on the Smart Charging for Plug-in Hybrid Electric Vehicle (플러그인 하이브리드 전기자동차의 스마트 충전에 관한 연구)

  • Roh, Chul-Woo;Kim, Min-Soo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.349-352
    • /
    • 2008
  • The most concerning issue in these days is the energy crisis by increasing threat of global warming and depletion of natural resources. In the situations, the Plug-in Hybrid Electric Vehicle (PHEV) is drawing attention from many countries for the next generation's car which has higher fuel efficiency and lower environmental impact. This paper presents simulation results about the limit capacity of central power-grid which doesn't have enough surplus electric power for charging PHEVs. Therefore, this paper also presents a smart charging system that can charge the PHEVs with a function of distributing demands of charging. The smart charging system is an agent facility between the government and consumer, which can recommend the best time to charge the battery of PHEVs by the lowest energy cost. This function of choosing time-slots is the technical system for the government which wants to control the consumption rate of electric power for PHEVs. Finally, this paper presents the economic feasibility of PHEVs from the two kinds of price system, midnight electric price and home electric price.

  • PDF

The smart EV charging system based on the big data analysis of the power consumption patterns

  • Kang, Hun-Cheol;Kang, Ki-Beom;Ahn, Hyun-kwon;Lee, Seong-Hyun;Ahn, Tae-Hyo;Jwa, Jeong-Woo
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.9 no.2
    • /
    • pp.1-10
    • /
    • 2017
  • The high costs of electric vehicle supply equipment (EVSE) and installation are currently a stumbling block to the proliferation of electric vehicles (EVs). The cost-effective solutions are needed to support the expansion of charging infrastructure. In this paper, we develope EV charging system based on the big data analysis of the power consumption patterns. The developed EV charging system is consisted of the smart EV outlet, gateways, powergates, the big data management system, and mobile applications. The smart EV outlet is designed to low costs of equipment and installation by replacing the existing 220V outlet. We can connect the smart EV outlet to household appliances. Z-wave technology is used in the smart EV outlet to provide the EV power usage to users using Apps. The smart EV outlet provides 220V EV charging and therefore, we can restore vehicle driving range during overnight and work hours.

Smart Phone RF Wireless Charging with 5.8-GHz Microwave Wireless Power Receiver (5.8-GHz무선전력수신기를 이용한 스마트폰 RF 무선충전)

  • Son, Myung Sik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.2
    • /
    • pp.25-28
    • /
    • 2021
  • In this paper, we studied smart phone RF wireless charging with 5.8-GHz microwave wireless power receiver. The dc output of the receiver connected to super capacitor and DC-DC converter for charging a smart phone. This configuration stably supplies 5V and current for charging it. Studies show that the more receivers are used at close range, the higher the received voltage values and the larger the capacity of the super capacitor, the longer the charging time. The present 5.8-GHz 1W wireless power transmission system is not enough for charging a smartphone mainly due to the lack of current of the receiver.

Measurement of Supercapacitor Charging Characteristic for RF Wireless Charging (RF무선충전을 위한 슈퍼커패시터 충전특성 측정)

  • Son, Myung Sik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.3
    • /
    • pp.136-139
    • /
    • 2021
  • In this paper, we studied the charging characteristics of high-capacity supercapacitor with high current for RF wireless charging system for smart phone charging. The dc output of the RF-DC receiver is connected to supercapacitor after which is connected to DC-DC converter for charging a smart phone. This configuration stably supplies voltage and current for charging it. Studies show that the higher charging current use, the rapidly shorter the charging time of supercapacitor is. The currents of 2A, 10A and 27A were used for charging supercapacitors. The charging time was measured for 3000F, 6000F, 12000F supercapacitors which is parallelly connected with 3000F supercapacitors.

The Study of EV Charging Infrastructure Installation Policy's Effectiveness in Jeju (제주지역 전기차 충전 인프라 구축정책에 대한 효과성 연구)

  • Youngkyu Koh;Suwan Kim;Jisup Shim;Sang-Hoon Son;Chulwoo Rhim
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.6
    • /
    • pp.211-224
    • /
    • 2022
  • In this study, factors affecting the efficacy of EV charging infrastructure improvement were investigated for EV users on Jeju Island. This study analyzed satisfaction with the EV charging infrastructure and demographic factors that affect the efficacy of EV charging infrastructure improvement. Factors found to affect the efficacy of EV charging infrastructure improvement include a sufficient number of charger installations, the speed in using EV chargers, the ease of obtaining additional information about charging, and fast customer service for faulty chargers. It was also confirmed that demographic factors such as user's housing types had a significant effect. This study contributes to verifying user satisfaction with the construction of EV charging infrastructure throughout Jeju Island.

Study on BESS Charging and Discharging Scheduling Using Particle Swarm Optimization (입자 군집 최적화를 이용한 전지전력저장시스템의 충·방전 운전계획에 관한 연구)

  • Park, Hyang-A;Kim, Seul-Ki;Kim, Eung-Sang;Yu, Jung-Won;Kim, Sung-Shin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.4
    • /
    • pp.547-554
    • /
    • 2016
  • Analyze the customer daily load patterns, be used to determine the optimal charging and discharging schedule which can minimize the electrical charges through the battery energy storage system(BESS) installed in consumers is an object of this paper. BESS, which analyzes the load characteristics of customer and reduce the peak load, is essential for optimal charging and discharging scheduling to save electricity charges. This thesis proposes optimal charging and discharging scheduling method, using particle swarm optimization (PSO) and penalty function method, of BESS for reducing energy charge. Since PSO is a global optimization algorithm, best charging and discharging scheduling can be found effectively. In addition, penalty function method was combined with PSO in order to handle many constraint conditions. After analysing the load patterns of target BESS, PSO based on penalty function method was applied to get optimal charging and discharging schedule.

Study of N-Port Electric Vehicle Charging Systems Using OPC-UA (OPC UA를 이용한 N-Port EV 충전 시스템 연구)

  • Lee, Seong Joon
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.6 no.8
    • /
    • pp.343-352
    • /
    • 2017
  • IEC62541, known as OPC-UA, is a standard communication protocol for Smart Grid (SG) and Smart Factory application platform. It was accepted as an IEC standard (IEC62541) in 2011 by IEC TC57, and is extending range of application as collaborating with other standrads. The government's policies to popularize EVs ("Workplace Charging Challenge"), the number of Electric vehicle which try to be charging in the factory is expected to increase. In this situation, indiscreet and uncontrolled EV charging can lead to some problems, such as excess of the peak demand capacity. Therefore, EVs, which is charging in SFs, must be monitoring and controlling to avoid and reduce peak demand. However, the standards for EVs charging differ from the standards for SFs. In other words, to increase the ease of use for drivers, and reduce risk for enterprise, we have needs of study to develop the protocols or to provide interoperability, for EVs charging in SFs. This paper deals with a EV charging management platform installing in a smart factory. And this platform can be easily integrated as part of SF management software. The main goal of this paper is to implement EV management system based on IEC61851 and IEC62541.