• 제목/요약/키워드: Smart Packet

검색결과 140건 처리시간 0.026초

Publish/Subscribe Protocol in Wireless Sensor Networks: Improved Reliability and Timeliness

  • Davis, Ernesto Garcia;Auge, Anna Calveras
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권4호
    • /
    • pp.1527-1552
    • /
    • 2018
  • The rapidly-evolving demand of applications using wireless sensor networks in several areas such as building and industrial automation or smart cities, among other, makes it necessary to determine and provide QoS support mechanisms which can satisfy the requirements of applications. In this paper we propose a mechanism that establishes different QoS levels, based on Publish/Subscribe model for wireless networks to meet application requirements, to provide reliable delivery of packet and timeliness. The first level delivers packets in a best effort way. The second one intends to provide reliable packet delivery with a novel approach for Retransmission Timeout (RTO) calculation, which adjusts the RTO depending on the subscriber Packet Delivery Ratio (PDR). The third one provides the same reliable packet delivery as the second one, but in addition, it provides data aggregation trying to be efficient in terms of energy consumption and the use of network bandwidth. The last one provides timeliness in the packet delivery. We evaluate each QoS Level with several performance metrics such as PDR, Message Delivery Ratio, Duplicated and Retransmitted Packet Ratio and Packet Timeliness Ratio to demonstrate that our proposal provides significant improvements based on the increase of the PDR obtained.

PPNC: Privacy Preserving Scheme for Random Linear Network Coding in Smart Grid

  • He, Shiming;Zeng, Weini;Xie, Kun;Yang, Hongming;Lai, Mingyong;Su, Xin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권3호
    • /
    • pp.1510-1532
    • /
    • 2017
  • In smart grid, privacy implications to individuals and their families are an important issue because of the fine-grained usage data collection. Wireless communications are utilized by many utility companies to obtain information. Network coding is exploited in smart grids, to enhance network performance in terms of throughput, delay, robustness, and energy consumption. However, random linear network coding introduces a new challenge for privacy preserving due to the encoding of data and updating of coefficients in forwarder nodes. We propose a distributed privacy preserving scheme for random linear network coding in smart grid that considers the converged flows character of the smart grid and exploits a homomorphic encryption function to decrease the complexities in the forwarder node. It offers a data confidentiality privacy preserving feature, which can efficiently thwart traffic analysis. The data of the packet is encrypted and the tag of the packet is encrypted by a homomorphic encryption function. The forwarder node random linearly codes the encrypted data and directly processes the cryptotext tags based on the homomorphism feature. Extensive security analysis and performance evaluations demonstrate the validity and efficiency of the proposed scheme.

지능형 액추에이터와 제어면 재분배를 이용한 무인항공기 고장대처 제어시스템 (Fault-Tolerant Control System for Unmanned Aerial Vehicle Using Smart Actuators and Control Allocation)

  • 양인석;김지연;이동익
    • 제어로봇시스템학회논문지
    • /
    • 제17권10호
    • /
    • pp.967-982
    • /
    • 2011
  • This paper presents a FTNCS (Fault-Tolerant Networked Control System) that can tolerate control surface failure and packet delay/loss in an UAV (Unmanned Aerial Vehicle). The proposed method utilizes the benefits of self-diagnosis by smart actuators along with the control allocation technique. A smart actuator is an intelligent actuation system combined with microprocessors to perform self-diagnosis and bi-directional communications. In the event of failure, the smart actuator provides the system supervisor with a set of actuator condition data. The system supervisor then compensate for the effect of faulty actuators by re-allocating redundant control surfaces based on the provided actuator condition data. In addition to the compensation of faulty actuators, the proposed FTNCS also includes an efficient algorithm to deal with network induced delay/packet loss. The proposed algorithm is based on a Lagrange polynomial interpolation method without any mathematical model of the system. Computer simulations with an UAV show that the proposed FTNCS can achieve a fast and accurate tracking performance even in the presence of actuator faults and network induced delays.

A Study on Privilege Elevation Attack Management for Smart Transaction Security on BlockChain Etherium Based System

  • Min, Youn-A
    • 한국컴퓨터정보학회논문지
    • /
    • 제24권4호
    • /
    • pp.65-71
    • /
    • 2019
  • IAs smart device penetration rate is more than 90%, mobile transaction ratio using smart device is increasing. Smart contracts are used in various areas of real life including smart trading. By applying smart contracts to the platform for smart transactions through block-chain technology, the threat of hacking or forgery can be reduced. However, various threats to devices in smart transactions can pose a threat to the use of block chain Etherium, an important element in privilege and personal information management. Smart contract used in block chain Ethereum includes important information or transaction details of users. Therefore, in case of an attack of privilege elevation, it is very likely to exploit transaction details or forge or tamper with personal information inquiry. In this paper, we propose a detection and countermeasure method for privilege escalation attack, which is especially important for block chain for secure smart transaction using block chain Ethereum. When comparing the results of this study with the results of similar applications and researches, we showed about 12~13% improvement in performance and suggested the future countermeasures through packet analysis.

Structural damage localization using spatial wavelet packet signature

  • Chang, C.C.;Sun, Z.
    • Smart Structures and Systems
    • /
    • 제1권1호
    • /
    • pp.29-46
    • /
    • 2005
  • In this study, a wavelet packet based method is proposed for identifying damage occurrence and damage location for beam-like structures. This method assumes that the displacement or the acceleration response time histories at various locations along a beam-like structure both before and after damage are available for damage assessment. These responses are processed through a proper level of wavelet packet decomposition. The wavelet packet signature (WPS) that consists of wavelet packet component signal energies is calculated. The change of the WPS curvature between the baseline state and the current state is then used to identify the locations of possible damage in the structure. Two numerical studies, one on a 15-storey shear-beam building frame and another on a simply-supported steel beam, and an experimental study on a simply-supported reinforced concrete beam are performed to validate the proposed method. Results show the WPS curvature change can be used to locate both single and sparsely-distributed multiple damages that exist in the structure. Also the accuracy of assessment does not seem to be affected by the presence of 20-15dB measurement noise. One advantage of the proposed method is that it does not require any mathematical model for the structure being monitored and hence can potentially be used for practical application.

Covert Channel Based on Instruction Gadgets in Smart Sensing Devices

  • Ho, Jun-Won
    • International journal of advanced smart convergence
    • /
    • 제6권4호
    • /
    • pp.56-59
    • /
    • 2017
  • In this paper, we design a covert channel based on instruction gadgets in smart sensing devices. Unlike the existing convert channels that usually utilize diverse physical characteristics or user behaviors or sensory data of smart sensing devices, we show that instruction gadgets could be exploited for covert channel establishment in smart sensing devices. In our devised covert channels, trojan smart sensing devices exchange attack packets in such a way that they encode an attack bit in attack packet to a series of addresses of instruction gadgets and decode an attack bit from a series of addresses of instruction gadgets.

Learning based relay selection for reliable content distribution in smart class application

  • Kim, Taehong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권8호
    • /
    • pp.2894-2909
    • /
    • 2015
  • As the number of mobile devices such as smart phones and tablets explodes, the need for new services or applications is also rapidly increasing. Smart class application is one of the emerging applications, in which most of contents are distributed to all members of a class simultaneously. It is highly required to select relay nodes to cover shadow area of radio as well as extend coverage, but existing algorithms in a smart class environment suffer from high control packet overhead and delay for exchanging topology information among all pairs of nodes to select relay nodes. In addition, the relay selection procedure should be repeated in order to adapt to the dynamic topology changes caused by link status changes or device's movement. This paper proposes the learning based relay selection algorithm to overcome aforementioned problems. The key idea is that every node keeps track of its relay quality in a fully distributed manner, where RQI (Relay Quality Indicator) is newly defined to measure both the ability of receiving packets from content source and the ability of successfully relaying them to successors. The RQI of each node is updated whenever it receives or relays broadcast packet, and the node having the higher RQI is selected as a relay node in a distributed and run-time manner. Thus, the proposed algorithm not only removes the overhead for obtaining prior knowledge to select relay nodes, but also provides the adaptability to the dynamic topology changes. The network simulation and experimental results prove that the proposed algorithm provides efficient and reliable content distribution to all members in a smart class as well adaptability against network dynamics.

Multi-match Packet Classification Scheme Combining TCAM with an Algorithmic Approach

  • Lim, Hysook;Lee, Nara;Lee, Jungwon
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제6권1호
    • /
    • pp.27-38
    • /
    • 2017
  • Packet classification is one of the essential functionalities of Internet routers in providing quality of service. Since the arrival rate of input packets can be tens-of-millions per second, wire-speed packet classification has become one of the most challenging tasks. While traditional packet classification only reports a single matching result, new network applications require multiple matching results. Ternary content-addressable memory (TCAM) has been adopted to solve the multi-match classification problem due to its ability to perform fast parallel matching. However, TCAM has a fundamental issue: high power dissipation. Since TCAM is designed for a single match, the applicability of TCAM to multi-match classification is limited. In this paper, we propose a cost- and energy-efficient multi-match classification architecture that combines TCAM with a tuple space search algorithm. The proposed solution uses two small TCAM modules and requires a single-cycle TCAM lookup, two SRAM accesses, and several Bloom filter query cycles for multi-match classifications.

CAM과 비트 분리 문자열 매처를 이용한 DPI를 위한 2단의 문자열 매칭 엔진의 개발 (A Memory-Efficient Two-Stage String Matching Engine Using both Content-Addressable Memory and Bit-split String Matchers for Deep Packet Inspection)

  • 김현진;최강일
    • 한국통신학회논문지
    • /
    • 제39B권7호
    • /
    • pp.433-439
    • /
    • 2014
  • 본 논문은 DPI (deep packet insepction)를 위한 CAM (content-addressable memory)과 병렬의 비트 분리(bit-split) 문자열 매처(matcher)를 이용한 2단의 문자열 매칭 엔진의 구조를 제안한다. 긴 타겟 패턴은 같은 길이의 서브 패턴으로 잘라지게 되고, 각 서브패턴은 1단의 CAM에 매핑된다. CAM으로부터의 매칭 인덱스의 시퀀스를 사용하여 2단에서 긴 패턴의 매칭 여부를 알 수 있다. CAM과 비트 분리 문자열 매처를 사용하여 이 기종의 메모리를 사용했을 경우에 메모리 요구량을 크게 줄일 수 있다.

Deep Neural Network-Based Critical Packet Inspection for Improving Traffic Steering in Software-Defined IoT

  • 담프로힘;맛사;김석훈
    • 인터넷정보학회논문지
    • /
    • 제22권6호
    • /
    • pp.1-8
    • /
    • 2021
  • With the rapid growth of intelligent devices and communication technologies, 5G network environment has become more heterogeneous and complex in terms of service management and orchestration. 5G architecture requires supportive technologies to handle the existing challenges for improving the Quality of Service (QoS) and the Quality of Experience (QoE) performances. Among many challenges, traffic steering is one of the key elements which requires critically developing an optimal solution for smart guidance, control, and reliable system. Mobile edge computing (MEC), software-defined networking (SDN), network functions virtualization (NFV), and deep learning (DL) play essential roles to complementary develop a flexible computation and extensible flow rules management in this potential aspect. In this proposed system, an accurate flow recommendation, a centralized control, and a reliable distributed connectivity based on the inspection of packet condition are provided. With the system deployment, the packet is classified separately and recommended to request from the optimal destination with matched preferences and conditions. To evaluate the proposed scheme outperformance, a network simulator software was used to conduct and capture the end-to-end QoS performance metrics. SDN flow rules installation was experimented to illustrate the post control function corresponding to DL-based output. The intelligent steering for network communication traffic is cooperatively configured in SDN controller and NFV-orchestrator to lead a variety of beneficial factors for improving massive real-time Internet of Things (IoT) performance.