• 제목/요약/키워드: Smart Machine

검색결과 863건 처리시간 0.028초

NFC를 이용한 스마트 대기표발권시스템 설계 (NFC based Smart Waiting Number Ticket Issuing System)

  • 강수경;김창재;이남용
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2014년도 추계학술대회
    • /
    • pp.940-943
    • /
    • 2014
  • 현재 기업이나 관공서 등에서 고객들은 대기표를 발권한 후 대기하며 시간을 소비하는 불편함을 겪고 있다. 이를 개선하고자 본 논문은 스마트폰과 연동하여 실시간 대기인원현황 알림서비스를 제공하는 새로운 대기표발권시스템 설계를 제안한다. 본 시스템의 설계를 위하여 발권기에 NFC 태그를 추가하여 대기정보를 입력한다. 그리고 대기표를 사용하는 기업 및 관공서들의 정보를 통합적으로 제공하고 관리하여 사용자들의 편의성을 증대시킨다. 따라서 본 시스템을 활용하면 기존 발권 시스템을 사용했을 때보다 대기시간을 효율적으로 사용할 수 있고, 발권종이를 사용하지 않음으로써 비용절감과 환경보호 효과까지 있을 것으로 보인다. 또한 애플리케이션으로 대기표 발권 취소 기능을 통해 업무 프로세스를 개선하는데 활용할 수 있다.

  • PDF

Lifesaver: Android-based Application for Human Emergency Falling State Recognition

  • Abbas, Qaisar
    • International Journal of Computer Science & Network Security
    • /
    • 제21권8호
    • /
    • pp.267-275
    • /
    • 2021
  • Smart application is developed in this paper by using an android-based platform to automatically determine the human emergency state (Lifesaver) by using different technology sensors of the mobile. In practice, this Lifesaver has many applications, and it can be easily combined with other applications as well to determine the emergency of humans. For example, if an old human falls due to some medical reasons, then this application is automatically determining the human state and then calls a person from this emergency contact list. Moreover, if the car accidentally crashes due to an accident, then the Lifesaver application is also helping to call a person who is on the emergency contact list to save human life. Therefore, the main objective of this project is to develop an application that can save human life. As a result, the proposed Lifesaver application is utilized to assist the person to get immediate attention in case of absence of help in four different situations. To develop the Lifesaver system, the GPS is also integrated to get the exact location of a human in case of emergency. Moreover, the emergency list of friends and authorities is also maintained to develop this application. To test and evaluate the Lifesaver system, the 50 different human data are collected with different age groups in the range of (40-70) and the performance of the Lifesaver application is also evaluated and compared with other state-of-the-art applications. On average, the Lifesaver system is achieved 95.5% detection accuracy and the value of 91.5 based on emergency index metric, which is outperformed compared to other applications in this domain.

비정형 Security Intelligence Report의 정형 정보 자동 추출 (An Automatically Extracting Formal Information from Unstructured Security Intelligence Report)

  • 허윤아;이찬희;김경민;조재춘;임희석
    • 디지털융복합연구
    • /
    • 제17권11호
    • /
    • pp.233-240
    • /
    • 2019
  • 사이버 공격을 예측하고 대응하기 위해서 수많은 보안 기업 회사에서는 공격기법의 특성, 수법 유형을 빠르게 파악하고, 이에 대한 Security Intelligence Report(SIR)들을 배포한다. 하지만 각 기업에서 배포하는 SIR들은 방대하며, 형식이 맞춰져 있지 않다. 본 논문은 대량의 비정형한 SIR들에서 정보를 추출하는데 소요되는 시간을 줄이고 효율적으로 파악하기 위해 SIR들에 대해 정형화하고 주요 정보를 추출하기 위해 5가지 분석기술이 적용된 프레임워크를 제안한다. SIR들의 데이터는 정답 라벨이 없기 때문에 비지도 학습방식을 통해 키워드 추출, 토픽 모델링, 문서 요약, 유사문서 검색 총 4가지 분석기술을 제안한다. 마지막으로 SIR들에서 위협 정보 추출하기 위해 데이터를 구축하였으며, 개체명 인식 기술에 적용하여 IP, Domain/URL, Hash, Malware에 속하는 단어를 인식하고 그 단어가 어떤 유형에 속하는지 판단하는 분석기술을 포함한 총 5가지 분석기술이 적용된 프레임워크를 제안한다.

이형 부품 표면실장기에 대한 겐트리 경로 문제의 최적 알고리즘 (Optimization Algorithm of Gantry Route Problem for Odd-type Surface Mount Device)

  • 정재욱;태현철
    • 산업경영시스템학회지
    • /
    • 제43권4호
    • /
    • pp.67-75
    • /
    • 2020
  • This paper proposes a methodology for gantry route optimization in order to maximize the productivity of a odd-type surface mount device (SMD). A odd-type SMD is a machine that uses a gantry to mount electronic components on the placement point of a printed circuit board (PCB). The gantry needs a nozzle to move its electronic components. There is a suitability between the nozzle and the electronic component, and the mounting speed varies depending on the suitability. When it is difficult for the nozzle to adsorb electronic components, nozzle exchange is performed, and nozzle exchange takes a certain amount of time. The gantry route optimization problem is divided into the mounting order on PCB and the allocation of nozzles and electronic components to the gantry. Nozzle and electronic component allocation minimized the time incurred by nozzle exchange and nozzle-to-electronic component compatibility by using an mixed integer programming method. Sequence of mounting points on PCB minimizes travel time by using the branch-and-price method. Experimental data was made by randomly picking the location of the mounting point on a PCB of 800mm in width and 800mm in length. The number of mounting points is divided into 25, 50, 75, and 100, and experiments are conducted according to the number of types of electronic components, number of nozzle types, and suitability between nozzles and electronic components, respectively. Because the experimental data are random, the calculation time is not constant, but it is confirmed that the gantry route is found within a reasonable time.

활성화 함수에 따른 유출량 산정 인공신경망 모형의 성능 비교 (Comparison of Artificial Neural Network Model Capability for Runoff Estimation about Activation Functions)

  • 김마가;최진용;방재홍;윤푸른;김귀훈
    • 한국농공학회논문집
    • /
    • 제63권1호
    • /
    • pp.103-116
    • /
    • 2021
  • Analysis of runoff is substantial for effective water management in the watershed. Runoff occurs by reaction of a watershed to the rainfall and has non-linearity and uncertainty due to the complex relation of weather and watershed factors. ANN (Artificial Neural Network), which learns from the data, is one of the machine learning technique known as a proper model to interpret non-linear data. The performance of ANN is affected by the ANN's structure, the number of hidden layer nodes, learning rate, and activation function. Especially, the activation function has a role to deliver the information entered and decides the way of making output. Therefore, It is important to apply appropriate activation functions according to the problem to solve. In this paper, ANN models were constructed to estimate runoff with different activation functions and each model was compared and evaluated. Sigmoid, Hyperbolic tangent, ReLU (Rectified Linear Unit), ELU (Exponential Linear Unit) functions were applied to the hidden layer, and Identity, ReLU, Softplus functions applied to the output layer. The statistical parameters including coefficient of determination, NSE (Nash and Sutcliffe Efficiency), NSEln (modified NSE), and PBIAS (Percent BIAS) were utilized to evaluate the ANN models. From the result, applications of Hyperbolic tangent function and ELU function to the hidden layer and Identity function to the output layer show competent performance rather than other functions which demonstrated the function selection in the ANN structure can affect the performance of ANN.

VAR 모델을 이용한 야생 동물의 농장 침입 예측 서비스 (Prediction Service of Wild Animal Intrusions to the Farm Field based on VAR Model)

  • 카담 아쉬위니;황민태
    • 한국정보통신학회논문지
    • /
    • 제25권5호
    • /
    • pp.628-636
    • /
    • 2021
  • 본 논문은 야생 동물들이 농장에 침입할 때 마다 당시의 환경 데이터를 수집한 다음 이를 이용한 벡터 자동 회귀(VAR) 모델 기반의 기계 학습을 통해 향후 야생 동물의 침입을 예측하는 서비스의 구현 및 성능 평가 결과를 담고 있다. 침입 예측을 위한 학습 데이터를 수집하기 위해 사물인터넷 기반의 하드웨어 프로토타입을 개발했으며, 이를 학교 인근에 위치한 소규모 농장에 설치하고서 침입 이벤트를 발생시키는 모의 시험을 장기간에 걸쳐 실시하였다. 구현한 벡터 자동 회귀 모델 기반의 침입 예측 서비스는 앞으로 30일간의 침입 발생 가능성이 높은 날짜와 시간을 제공한다. 더불어 제안 서비스는 야생 동물의 농장 침입 시 농장 주인의 모바일 기기에 실시간으로 알림을 제공하는 기능을 포함하며, 이에 대한 성능 평가를 실시하여 평균 7.89초의 응답 시간을 보여줌을 확인하였다.

개방형 KBIMS 라이브러리를 활용한 최적설계대안 선정을 위한 BIM-LCC분석 시스템 구축 (Establishment of BIM-LCC Analysis System for Selecting Optimal Design Alternative using Open KBIMS Libraries)

  • 이춘경
    • 한국산학기술학회논문지
    • /
    • 제21권12호
    • /
    • pp.153-161
    • /
    • 2020
  • 스마트건설기술 중 하나인 건설정보모델은 현행 건설시설사업에 필수 기술로 인식되고 있다. 특히 건설사업 발주 기관인 조달청 등에서 BIM 전면도입 계획을 발표하였기에 설계지원용역 업무에서도 BIM설계 정보를 활용한 업무추진이라는 변화가 요구되고 있다. LCC분석은 공사내역서상의 아이템, 물량, 비용 정보가 필수 정보이므로 BIM설계 정보 활용에 따른 업무 효율성과 시간단축이 기대되는 분야이다. 이에 본 연구에서는 개방형 KBIMS 라이브러리를 적극 활용하여 최적설계 대안 선정용 BIM-LCC분석 시스템을 구축하였다. 설계안의 적정성과 최적설계안을 선정하기 위하여 단일대안과 최적대안 LCC분석 기능을 구현하였으며, LCC분석과 기능분석을 실시하여 가치가 높은 대안을 선택할 수 있는 기능도 포함하였다. 그러나 BIM-LCC분석 시스템은 국토교통부에서 개방형 BIM을 위해 공개한 건축과 기계 라이브러리만을 적용했다는 한계점을 가지고 있으나 BIM기술을 적용했다는 점에서 실무 활용성과 업무 효율성을 기대할 수 있다. 향후 설계단계 BIM설계정보를 활용한 LCC분석 지원 툴로서 활용하기 위해 다양한 테스트베드를 선정하여 해당 시스템을 검증하고, 실무적용성 및 UI개선, 신규로 추가되는 라이브러리에 대한 LCC기준 DB화 방안에 대한 검토가 필요하겠다.

다수 가전기기 유효전력의 스팩토그램 분석 및 LSTM기반의 전력 분해 알고리즘 (Spectogram analysis of active power of appliances and LSTM-based Energy Disaggregation)

  • 김임규;김현철;김승윤;신상용
    • 한국융합학회논문지
    • /
    • 제12권2호
    • /
    • pp.21-28
    • /
    • 2021
  • 본 연구에서는 가전기기 5종에 대해 실제 측정 전력 데이터를 이용하여 딥러닝 기반의 NILM 기법을 제안하고 그 효용성을 검증 하고자 한다. 약 3주간 중앙 전력 측정 장치 및 5종 가전기기(냉장고, 인덕션, TV, 세탁기, 공기청정기)의 유효전력을 개별 측정하였다. 실측 데이터의 전처리 방법을 소개하고 Spectogram 분석을 통해 가전 기기별 특징을 분석하였다. 가전기기별 특징을 학습 데이터셋으로 구성하였다. 중앙 전력 측정 기기와 가전기기 5종에서 측정된 모든 전력 데이터를 시계열 매핑하여 시계열 데이터 분석에 우수한 RNN 계열의 LSTM 신경망을 이용해 학습을 수행하였다. 메인 중앙 전력 측정 장치의 전력 데이터만으로도 5종 전력 신호를 분해해낼 수 있는 알고리즘을 제안하였다.

엣지 디바이스에서의 딥러닝 기반 차량 인식 및 속도 추정을 통한 스마트 횡단보도 시스템의 설계 및 구현 (Design and Implementation of A Smart Crosswalk System based on Vehicle Detection and Speed Estimation using Deep Learning on Edge Devices)

  • 장선혜;조희은;정진우
    • 한국정보통신학회논문지
    • /
    • 제24권4호
    • /
    • pp.467-473
    • /
    • 2020
  • 최근 우리나라의 자동차 보급률이 증가함에 따라 교통사고 발생 건수 또한 증가하고 있다. 특히, 차량간 사고뿐만 아니라 횡단보도 근처에서의 인명 사고 또한 증가하고 있어 횡단보도 교통안전에 대한 주의가 더욱 요구되고 있다. 본 논문에서는 NVIDIA Jetson Nano급의 엣지 디바이스를 이용하여 횡단보도에 접근하는 차량을 인식하고 속도를 추정함으로써 횡단보도 주위 안전 상태를 예측하는 시스템을 제안한다. 딥러닝 기반 차량 위치 인식을 통하여 얻은 정보들을 바탕으로 다양한 기계 학습 기법을 학습시켜 차량 속도에 따른 위험 정도를 예측한다. 마지막으로, 실제 주행 영상을 이용한 실험 및 웹 시뮬레이션을 통해 제안하는 시스템의 성능과 활용 가능성을 검증하였다.

Object detection in financial reporting documents for subsequent recognition

  • Sokerin, Petr;Volkova, Alla;Kushnarev, Kirill
    • International journal of advanced smart convergence
    • /
    • 제10권1호
    • /
    • pp.1-11
    • /
    • 2021
  • Document page segmentation is an important step in building a quality optical character recognition module. The study examined already existing work on the topic of page segmentation and focused on the development of a segmentation model that has greater functional significance for application in an organization, as well as broad capabilities for managing the quality of the model. The main problems of document segmentation were highlighted, which include a complex background of intersecting objects. As classes for detection, not only classic text, table and figure were selected, but also additional types, such as signature, logo and table without borders (or with partially missing borders). This made it possible to pose a non-trivial task of detecting non-standard document elements. The authors compared existing neural network architectures for object detection based on published research data. The most suitable architecture was RetinaNet. To ensure the possibility of quality control of the model, a method based on neural network modeling using the RetinaNet architecture is proposed. During the study, several models were built, the quality of which was assessed on the test sample using the Mean average Precision metric. The best result among the constructed algorithms was shown by a model that includes four neural networks: the focus of the first neural network on detecting tables and tables without borders, the second - seals and signatures, the third - pictures and logos, and the fourth - text. As a result of the analysis, it was revealed that the approach based on four neural networks showed the best results in accordance with the objectives of the study on the test sample in the context of most classes of detection. The method proposed in the article can be used to recognize other objects. A promising direction in which the analysis can be continued is the segmentation of tables; the areas of the table that differ in function will act as classes: heading, cell with a name, cell with data, empty cell.