• Title/Summary/Keyword: Smart LED

Search Result 473, Processing Time 0.029 seconds

Performance Analysis of Optical Camera Communication with Applied Convolutional Neural Network (합성곱 신경망을 적용한 Optical Camera Communication 시스템 성능 분석)

  • Jong-In Kim;Hyun-Sun Park;Jung-Hyun Kim
    • Smart Media Journal
    • /
    • v.12 no.3
    • /
    • pp.49-59
    • /
    • 2023
  • Optical Camera Communication (OCC), known as the next-generation wireless communication technology, is currently under extensive research. The performance of OCC technology is affected by the communication environment, and various strategies are being studied to improve it. Among them, the most prominent method is applying convolutional neural networks (CNN) to the receiver of OCC using deep learning technology. However, in most studies, CNN is simply used to detect the transmitter. In this paper, we experiment with applying the convolutional neural network not only for transmitter detection but also for the Rx demodulation system. We hypothesize that, since the data images of the OCC system are relatively simple to classify compared to other image datasets, high accuracy results will appear in most CNN models. To prove this hypothesis, we designed and implemented an OCC system to collect data and applied it to 12 different CNN models for experimentation. The experimental results showed that not only high-performance CNN models with many parameters but also lightweight CNN models achieved an accuracy of over 99%. Through this, we confirmed the feasibility of applying the OCC system in real-time on mobile devices such as smartphones.

A Study on the Activation of Citizen Participation through Living Lab (시민참여형 스마트시티 리빙랩 활성화 방안 연구)

  • Park, JunHo;Park, JeongWoo;Nam, KwangWoo
    • Journal of the Korean Regional Science Association
    • /
    • v.35 no.3
    • /
    • pp.33-44
    • /
    • 2019
  • Smart City is the regional innovation platform that actively utilizes information and communication technologies to diversify city services and improve the performance and quality, hence improving the quality of life and creating new trends of urban activities. Recently, the importance of citizen participation is increasingly emphasized to build smart cities successfully and the Living Lab, an open innovation platform led by users, is taking center stage as a means of realizing it. Accordingly, this study aims to establish the plans for popularizing living labs that provide innovative environments for domestic smart cities. To this end, first of all, political trends related to domestic smart cities' living labs were analyzed, and then, individual characteristics and development processes of the relevant cases were investigated. In addition, in-depth interviews were conducted with the experts of specialized agencies from Netherlands, Finland, and Denmark, etc. which are considered as leading countries in smart cities' living labs. As a result, in order to popularize living labs in domestic smart cities, the following policies were proposed; establishing support systems for commercialization and dissemination, building intermediary support organizations, improvement of laws and institutions, establishing the joint response systems with neighboring areas, etc.

Combining smart materials for enhancing intelligent systems: initial studies, success cases and research trends

  • Diaz Lantada, A.;Lafont Morgado, P.;Munoz-Guijosa, J.M.;Munoz Sanz, J.L.;Echavarri Otero, J.;Chacon Tanarro, E.;De la Guerra Ochoa, E.
    • Smart Structures and Systems
    • /
    • v.14 no.4
    • /
    • pp.517-539
    • /
    • 2014
  • The combined use of smart materials, complementing each others' characteristics and resulting in devices with optimised features, is providing new solutions in many industries. The use of ingenious combinations of smart materials has led to improvements in actuation speed and force, signal-to-noise ratio, sensor precision and unique capabilities such as self-sensing self-healing systems and energy autonomy. This may all give rise to a revival for numerous families of smart materials, for which application proposals had already reached a stationary situation. It may also provide the boost needed for the definitive industrial success of many others. This study focuses on reviewing the proposals, preliminary studies and success cases related to combining smart materials to obtain multifunctional, improved systems. It also examines the most outstanding applications and fields for the combined use of these smart materials. We will also discuss related study areas which warrant further research for the development of novel approaches for demanding applications.

Policy Direction Setting through Comparative Analysis of Foreign Smart City Policies (국외 스마트시티 추진 정책 비교 분석을 통한 성과 확산 방향 설정)

  • Jung, Seunghyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.9
    • /
    • pp.151-160
    • /
    • 2020
  • Various smart city projects have been actively promoted as important policies of governments in various countries. The key to the success of smart cities led by governments is to develop sustainable governance through the expansion and proliferation of outcomes. This study comparatively analyzed the smart city policies of the USA and Europe from viewpoints of outcome expansion and proposed policy directions for smart cities in Korea. The comparison items were case cities, the expansion of smart city technologies and services, the measurement of outcomes, the accumulation of knowledge and information, and standardization. This study found that the items of each index were linked for the purpose of assessment, expansion, and the creation of successful cases in the USA and Europe. Based on our analysis, four policy directions were proposed that included the early provision of follow-up measures for case cities, the development of a project performance assessment system, the provision of an integrated knowledge accumulation system, and an earnest promotion of industry activation policies.

The necessity of Smart Factory's Standards and Certification System Based on Grounded theory (근거이론에 의한 스마트공장 표준 및 인증제도 도입 필요성)

  • Shin, Jong-Chang;Kim, Kyung-Ihl
    • Journal of Convergence for Information Technology
    • /
    • v.8 no.2
    • /
    • pp.203-208
    • /
    • 2018
  • This study is concerned with the introduction and operation of smart factories. In order to accomplish the purpose of research, we made a standard system of smart factory and investigated the recognition system. This study was conducted as a grounded theory methodology among qualitative research methodologies. The results of the study are the necessity of a tool to appropriately evaluate the new manufacturing process management system and related management activities to achieve the successful introduction of smart factories and the management performance of the organization. In order to successfully implement the Smart Factory Certification System, it is necessary to establish a certification organization system, enact relevant laws and amendments, operate government-led pilot projects, train professional workers, and establish incentive policies.

Forward Error Correction based Adaptive data frame format for Optical camera communication

  • Nguyen, Quoc Huy;Kim, Hyung-O;Lee, Minwoo;Cho, Juphil;Lee, Seonhee
    • International journal of advanced smart convergence
    • /
    • v.4 no.2
    • /
    • pp.94-102
    • /
    • 2015
  • Optical camera communication (OCC) is an extension of Visible Light Communication. Different from traditional visible light communication, optical camera communications is an almost no additional cost technology by taking the advantage of build-in camera in devices. It was became a candidate for communication protocol for IoT. Camera module can be easy attached to IoT device, because it is small and flexible. Furthermore almost smartphone equip one or two camera for both back and font side with high quality and resolution. It can be utilized for receiving the data from LED or positioning. Actually, OCC combines illumination and communication. It can supply communication for special areas or environment where do not allow Radio frequency such as hospital, airplane etc. There are many concept and experiment be proposed. In this paper we proposed utilizing Android smart-phone camera for receiver and introduce new approach in modulation scheme for LED at transmitter. It also show how Manchester coding can be used encode bits while at the same time being successfully decoded by Android smart-phone camera. We introduce new data frame format for easy decoded and can be achieve high bit rate. This format can be easy to adapt to performance limit of Android operator or embedded system.

Development of Wrist Tunnel Syndrome Prevention Smart Gloves using CNT-based Tensile Fabric Sensor: Focusing on Mouse Use (CNT 기반의 인장 직물 센서를 사용한 손목터널증후군 예방 스마트장갑 개발: 마우스사용을 중심으로)

  • Chun, Se-Hwan;Kim, Sang-Un;Kim, Joo-Yong
    • Science of Emotion and Sensibility
    • /
    • v.24 no.4
    • /
    • pp.117-128
    • /
    • 2021
  • In this work, we study smart gloves that can prevent carpal tunnel syndrome when using a mouse. Because the left and right wrist movements are fine, a tensile fabric sensor with a large gauge factor and low hysteresis was required before the study. A universal testing machine was used to calculate each gauge rate on four different fabrics, and the fabric with the least hysteresis was selected. In addition, three attachment methods were analyzed using Arduino to select a method with a large sensor value change. For prototypes made by attaching to the selected fabric, data patterns were analyzed using Arduino. The first method identifies only one sensor (A sensor), and the second identifies two sensors (A and B sensors). When the wrist is bent to the right, tensile fabric sensors are attached to both the left (A sensor) and right (B sensor) sides of the wrist, the A sensor is strained, increasing the △sensor value, and the B sensor is relaxed, decreasing the △sensor value. However, when the wrist was bent to the left, the pattern was analyzed in the opposite direction. Through this study, we examined smart gloves to prevent carpal tunnel syndrome with an algorithm that turns on the LED when the wrist is bent, and based on the results of this study, we will directly use mice on 10 people to identify problems and solve problems when used.

Development and Application of a High School-University Linked Maker Education Program Using Smart Clothing Technology: Development of Emotional Eco-bag Applying E-textiles and Transfer Dyeing (스마트의류 테크놀로지를 적용한 고교-대학 연계 메이커교육 프로그램 개발과 적용: 전자섬유와 전사염을 적용한 감성에코백 개발)

  • Kang, Da-yae;Lee, Jung-soon
    • Science of Emotion and Sensibility
    • /
    • v.25 no.1
    • /
    • pp.129-142
    • /
    • 2022
  • This study evaluates a program developed for a high school-university linked class. The program combines maker education and smart clothing technology, which has great potential. First, in the preparation stage, the dyeing design course incorporates the contents of previous studies on smart clothing and maker education. Second, in the development stage, a program was developed to make emotional eco-bags by applying the transfer dyeing technique using transfer paper for inkjet printers and smart clothing technology using conductivity thread and LED bulbs. Third, in the implementation stage, the class was offered to 17 high school students who want to major in clothing and textiles. Lastly, the class was evaluated. The program had a 4.95 satisfaction level as measures on a five-point scale. Furthermore, this paper suggested an advanced program with Lilypad Arduino. In conclusion, through this study, it was confirmed that the emotional eco-bag development program applied with conductive yarn and transfer dye could more easily produce smart clothing technology, thereby expanding the thinking of high school students regarding the clothing major.

A Memory-Efficient Fingerprint Verification Algorithm Using a Multi-Resolution Accumulator Array

  • Pan, Sung-Bum;Gil, Youn-Hee;Moon, Dae-Sung;Chung, Yong-Wha;Park, Chee-Hang
    • ETRI Journal
    • /
    • v.25 no.3
    • /
    • pp.179-186
    • /
    • 2003
  • Using biometrics to verify a person's identity has several advantages over the present practices of personal identification numbers (PINs) and passwords. At the same time, improvements in VLSI technology have recently led to the introduction of smart cards with 32-bit RISC processors. To gain maximum security in verification systems using biometrics, verification as well as storage of the biometric pattern must be done in the smart card. However, because of the limited resources (processing power and memory space) of the smart card, integrating biometrics into it is still an open challenge. In this paper, we propose a fingerprint verification algorithm using a multi-resolution accumulator array that can be executed in restricted environments such as the smart card. We first evaluate both the number of instructions executed and the memory requirement for each step of a typical fingerprint verification algorithm. We then develop a memory-efficient algorithm for the most memory-consuming step (alignment) using a multi-resolution accumulator array. Our experimental results show that the proposed algorithm can reduce the required memory space by a factor of 40 and can be executed in real time in resource-constrained environments without significantly degrading accuracy.

  • PDF

A Study on Remote Control of Inverter Based on VLC for SMART FEMS (스마트 FEMS를 위한 VLC기반 인버터 원격제어 연구)

  • Lee, Jung-Hoon;Lee, Seung-Youn;Choi, Sang-Yule;Lee, Jong-Joo;Kim, Hyung-O
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.10
    • /
    • pp.1382-1387
    • /
    • 2018
  • There is a high demand for energy efficiency improvement of factories that make up a large part of national electric energy. Therefore, research on smart FEMS technology for monitoring, analyzing and controlling energy consumption patterns is under way, but there is still a lack of research on detailed element technology for communication and control inside the factory. In this paper, we proposed OFDM VLC system based on MODBUS protocol for communication between gateways, sensors, and devices to implement smart FEMS in indoor factory environment. Assuming a conveyor belt load control, we validated the proposed system by simulating the inverter motor control and checking the performance.