• 제목/요약/키워드: Smart Gloves

검색결과 19건 처리시간 0.024초

드론 제어의 편의성을 향상한 스마트 글러브 짐벌 제어 (Smart Glove Gimbal Control that Improves the Convenience of Drone Control)

  • 이승호;신수용
    • 한국정보통신학회논문지
    • /
    • 제26권6호
    • /
    • pp.890-896
    • /
    • 2022
  • 본 논문에서는 다양한 분야에 사용되는 드론의 제어에 편의성과 접근성을 높이기 위해 스마트 글러브를 통한 짐벌 카메라 제어를 구현하였다. 스마트 글러브는 사람의 제스처를 파악하여 블루투스를 통해 신호를 전달한다. 전달받은 신호는 GCS(Gound Control Station)을 통해 드론에 적합한 신호로 변환한다. 스마트 글러브의 신호는 짐벌락을 방지하기 위해 쿼터니언 방식으로 표현되지만, 짐벌 카메라의 경우 Roll, Pitch, Yaw의 방식을 사용하기에 변환이 필요하다. 데이터 변환 임무를 수행한 GCS는 Wi-Fi를 통해 드론의 제어보드로 입력 신호를 전송한다. 제어보드에서는 전송받은 신호를 PWM 방식으로 생성하여 출력된다. 출력된 신호는 SBUS 방식을 통해 짐벌 카메라에 입력되어 제어하게 된다. 스마트 글러브의 입력 신호는 짐벌 카메라에 출력까지 평균 0.093 s, 최대 0.099 s로 실시간 사용에 문제가 없음을 보였다.

Implementation of Smart Gloves for the Blind and Visually Impaired

  • Park, Myeong-Chul;Kim, Tae-Sun
    • 한국컴퓨터정보학회논문지
    • /
    • 제23권8호
    • /
    • pp.101-106
    • /
    • 2018
  • Most people with visual impairments can not use both hands freely because they carry a cane. And unnecessary contact with people around you during walking can occur. Other guides include guide dogs, but the price and maintenance cost are expensive and difficult to manage. In this paper, we propose a smart glove, which prevents unnecessary contact when blind people use the cane, detects the obstacle ahead by using the ultrasonic sensor, and informs the presence of the obstacle by using the servo motor. In addition, the electrostatic proximity touch module on the fingers executes a specific application of the smart phone connected by Bluetooth when the finger touches each other. It is designed to allow you to use text or phone calls when you are lost or in an emergency. The results of this study will be used as a tool to provide a more convenient life for the visually impaired.

겨울철 전자 기기 사용을 위한 전도성 보온장갑의 착용성 평가 - 손의 기민성과 사용성, 체온조절 반응을 중심으로 - (Performance of Conductive Gloves When Using Electronic Devices in a Cold Environment - Manual Dexterity, Usability and Thermoregulatory Responses -)

  • 권주연;정다희;김시연;정원영;이주영
    • 한국의류산업학회지
    • /
    • 제22권5호
    • /
    • pp.686-695
    • /
    • 2020
  • The present study evaluated the manual dexterity and usability of conductive gloves when operating touchscreen devices in the cold. Twelve male subjects (23.3±1.5 years in age) participated in three experimental conditions: no gloves, fabric conductive and lambskin conductive gloves. Manual dexterity was tested using both Purdue Pegboard (PP) and ASTM dexterity tests at an air temperature of 5℃ and air humidity of 30%RH. Glove usability was tested through the following touchscreen tests: tap, double tap, long tab, drag, flick, and multi-touch. The results showed that manual dexterity according to the PP (2.5 mm of a pin diameter) and ASTM tests (8 mm of a stick diameter) was worse for the two glove conditions than for the no glove condition (p<.005). PP dexterity was better for the fabric glove condition than for the lambskin glove condition (p<.05); however, there was no difference in ASTM dexterity between the two glove conditions. Hand and finger skin temperatures were higher for the glove conditions than the bare hand condition (p<.05), with no differences between the two glove conditions. The touchscreen usability was the best for the no glove condition, followed by fabric gloves (p<.05). Wearing either fabric or lambskin gloves diminishes hand dexterity while maintaining hand and finger temperatures at higher levels. For improved hand dexterity in dealing with small numbers, letters on a touchscreen in cold environments, we recommend wearing fabric conductive gloves rather than lambskin conductive gloves.

시각장애인을 위한 스마트장갑 구현 (Implementation of Smart Gloves for the Blind and Visually Impaired)

  • 김태선;김동희;황운태;박혜민
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2018년도 제57차 동계학술대회논문집 26권1호
    • /
    • pp.37-38
    • /
    • 2018
  • 본 논문에서 제안하는 시각장애인용 스마트장갑은 시각장애인들이 지팡이를 사용할 때 발생하는 불필요한 접촉을 방지하고, 초음파센서를 이용해 전방의 장애물을 탐지하여 서보모터를 이용해 손등을 두드려 장애물의 유무를 알려준다. 또한 손가락에 있는 정전식 근접 터치 모듈은 손가락끼리 접촉하였을 때 블루투스로 연결된 스마트폰의 특정 어플리케이션을 실행하여 길을 잃거나 긴급 상황이 발생 했을 때 시각장애인도 불편함 없이 문자나 전화를 이용할 수 있도록 고안하였다.

  • PDF

A Prototype of Flex Sensor Based Data Gloves to Track the Movements of Fingers

  • Bang, Junseung;You, Jinho;Lee, Youngho
    • 스마트미디어저널
    • /
    • 제8권4호
    • /
    • pp.53-57
    • /
    • 2019
  • In this paper, we propose a flex sensor-based data glove to track the movements of human fingers for virtual reality education. By putting flex sensors and utilizing an accelerometer, this data glove allows people to enjoy applications for virtual reality (VR) or augmented reality (AR). With the maximum and minimum values of the flex sensor at each finger joint, it determines an angle corresponding to the bending value of the flex sensor. It tracks the movements of fingers and hand gestures with respect to the angle values at finger joints. In order to prove the effectiveness of the proposed data glove, we implemented a VR classroom application.

CNT 기반의 인장 직물 센서를 사용한 손목터널증후군 예방 스마트장갑 개발: 마우스사용을 중심으로 (Development of Wrist Tunnel Syndrome Prevention Smart Gloves using CNT-based Tensile Fabric Sensor: Focusing on Mouse Use)

  • 전세환;김상운;김주용
    • 감성과학
    • /
    • 제24권4호
    • /
    • pp.117-128
    • /
    • 2021
  • 본 연구의 목적은 마우스 사용 시 손목터널증후군을 예방할 수 있는 스마트장갑을 연구하는 것이다. 연구에 앞서 손목의 좌·우 움직임은 미세하므로 게이지율(Gauge Factor)이 크고, 이력현상(Hysteresis)이 적은 인장 직물 센서가 필요하다. 만능재료시험기(UTM)를 통해 4가지의 직물을 분석하여 각각의 게이지율을 계산하고, 이력현상도 가장 적은 직물을 선택하였다. 또한, 3가지 부착방법을 아두이노로 분석하여 센서값 변화(△Sensor Value) 값이 큰 방법을 선택하였다. 선택된 직물과 부착방법으로 제작한 프로토타입을 아두이노를 통해 데이터 패턴을 분석하였다. 첫 번째는 센서 1개(A 센서)로만 파악하는 방법이고, 두 번째로는 센서 2개(A, B 센서)로 파악하는 방법이다. 손목 왼쪽(A 센서), 손목 오른쪽(B 센서) 양쪽에 인장 직물 센서를 부착하고, 손목을 오른쪽으로 꺾을 때 A 센서는 늘어나서 △Sensor Value 값이 커지고, B 센서는 줄어들어서 △Sensor Value가 작아진다. 반면에 손목을 왼쪽으로 꺾을 때는 반대로 패턴이 분석되었다. 본 연구를 통해 손목이 꺾일 시 LED가 켜지는 알고리즘으로 손목터널증후군을 예방하는 스마트장갑을 연구하였고, 본 연구 결과를 기반으로 후속 연구에서는 10명을 대상으로 직접 마우스를 사용하면서 실제 사용 시 문제점을 파악하고 파악된 문제점을 해결하고자 한다.

웨어러블 기능성 스마트 패션제품 개발 연구 - 특정사용자를 위한 특수한 기능성 구현을 중심으로 - (A Study on the Development of Wearable Smart Fashion Product - Focused on the Construction of Optimized Functionalities for Particular Needs -)

  • 이현승;이재정
    • 한국의류산업학회지
    • /
    • 제21권2호
    • /
    • pp.133-140
    • /
    • 2019
  • This study developed smart fashion prototypes that provide utilitarian functionality by combining Fashion and Electronics regarding the IT focused convergence tendency in modern industries. A convergence R&D workshop was performed by Fashion design majors and Engineering majors for the study. As a result, 5 functional smart fashion prototypes were developed and the outline of each prototype are as follows. The $1^{st}$ prototype, 'Hidden Camera Detecting Coat' focused on gender-related crimes. The coat uses infrared lighting and LED technologies to provide a function to detect hidden cameras in suspicious public spaces such as toilets. The $2^{nd}$ prototype, 'Heating-massage Suit' targeted patients with musculoskeletal system difficulties. The suit uses heating and vibration technologies to provide a heating massage treatment for patients with ongoing difficulties in their daily lives. The $3^{rd}$ prototype is an air-bag jacket to prevent sexual molestation on public transportation. The jacket extends its volume through pressure sensing, air compressing, motors and 3D-printing technology to secure the wearer's personal preventive space between the user's body and others. The $4^{th}$ prototype is a town wear for people suffering from synesthesia. People with synesthesia inadvertently see colors when exposed to certain sounds. This town wear uses sound sensing, air compressing, motors and 3D-printing technology to provide sound prevention and a comfortable sound playing function. The $5^{th}$ prototype is a set of a vest and a gloves for visually impaired people. The vest and gloves uses DMS, voice playing, vibration technology to provide distance measuring and warning functions.

정전용량방식 터치스크린에 작동하는 전도성 가죽장갑 소재의 제조 (Preparation of Conductive Leather Gloves for Operating Capacitive Touch Screen Displays)

  • 홍경화
    • 한국의류산업학회지
    • /
    • 제14권6호
    • /
    • pp.1018-1023
    • /
    • 2012
  • Smartphone is integrated into the daily lives of all types of people not even young generation. A touch screen display is a primary input device of a smart phone, a tablet computer, etc. While there are many tough technologies in existence, resistive and capacitive are dominant and currently lead the touch screen panel industry. And a capacitive touch screen panel widely used in smart phones is coated with a material that stores electrical charges. In this study, we tried to manufacture gloves produced with electro-conducting leather as a tool to operate a touch panel screen. Therefore, electrically conductive materials, Polyaniline(PANI), Poly(3,4-ethylenedioxythiophene) (PEDOT), and Carbon nanotubes (CNT) were applied to the surface of leather to be used as a touching operator for capacitive touch screen panel. The leather samples were treated by simple painting method; firstly, they were painted with aqueous solution containing each of the electrically conductive materials and then dried. This cycle was repeated three times. Consequently, the treated leather samples showed electrical conductivity and reasonable working performance to the capacitive touch screen. And, PANI showed the best performance and highest electrical conductivity, and then PEDOT and, CNT in decreasing order. This is because the solubilities of PANI and PEDOT show higher than dispersibility of CNT. Thus, the concentration of conducting polymers was greater than that of CNT in the treating solutions.

로봇을 활용한 배전 활선공법 기술분석 및 적용 타당성 연구 (Analysis and Applicability Assessment of Robotic Live-Line Electricity Distribution Technology)

  • 양선제;국태용;박춘식;서인용
    • 전기학회논문지
    • /
    • 제67권9호
    • /
    • pp.1125-1140
    • /
    • 2018
  • This paper analyzes robotic technology developed for live-line electricity distribution and its applicability to domestic environment. In doing so, available robotic systems developed for the live-line work are thoroughly investigated and compared in terms of from robotic functionality to economic feasibility. To assess the technology readiness for domestic live-line robot, the rubber gloves based direct live-line engineering methods have been also analyzed and mapped into robotic technology requisites. The results are expected as a fundamental data to help with solving the safety and economics issues when considering development and introduction of compact live-line robot for complex domestic electricity distribution environment.

스마트패션제품 개발 동향에 관한 연구 (A study on smart fashion product development trends)

  • 서성은;노정심
    • 복식문화연구
    • /
    • 제23권6호
    • /
    • pp.1097-1115
    • /
    • 2015
  • ICT in the IOT era is the core basis of modern society. This study investigated and analyzed the recent commercialization trends of smart fashion products internationally and domestically, to utilize them as the basis of data for developing user-friendly smart fashion products that can meet the needs of consumers. Keyword research using the most representative search engines, Google and Naver was conducted for searching for various wearable items commercialized actively since 2010. The final 78 products were classified by the physical area, and the key features and benefits were analyzed. Smart fashion products were classified as four physical types for the head and face, torso, arms and hands, and ankles and feet. Smart fashion products for each body part were developed in various ways, such as hats, glasses, lenses, virtual screens, earphones, headsets, clothing, watches, wrist bands, gloves, rings, wallets, bags, anklets, shoes, socks, and insoles. The main features were music playback, bluetooth, a camera based on NFC, virtual effects, health and safety protection through measuring heartbeat and momentum, and social network sharing of all kinds of information, based on inter-working with a smartphone. These functions represent the physical, social, and emotional interactions among users and their surroundings, as well as the users, themselves. The research results are expected to be used in future studies on planning user-friendly and marketable products through in-depth analysis of the design characteristics of smart fashion products as well as consumer responses.