• Title/Summary/Keyword: Smart Feature

Search Result 479, Processing Time 0.028 seconds

Self-Supervised Long-Short Term Memory Network for Solving Complex Job Shop Scheduling Problem

  • Shao, Xiaorui;Kim, Chang Soo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.8
    • /
    • pp.2993-3010
    • /
    • 2021
  • The job shop scheduling problem (JSSP) plays a critical role in smart manufacturing, an effective JSSP scheduler could save time cost and increase productivity. Conventional methods are very time-consumption and cannot deal with complicated JSSP instances as it uses one optimal algorithm to solve JSSP. This paper proposes an effective scheduler based on deep learning technology named self-supervised long-short term memory (SS-LSTM) to handle complex JSSP accurately. First, using the optimal method to generate sufficient training samples in small-scale JSSP. SS-LSTM is then applied to extract rich feature representations from generated training samples and decide the next action. In the proposed SS-LSTM, two channels are employed to reflect the full production statues. Specifically, the detailed-level channel records 18 detailed product information while the system-level channel reflects the type of whole system states identified by the k-means algorithm. Moreover, adopting a self-supervised mechanism with LSTM autoencoder to keep high feature extraction capacity simultaneously ensuring the reliable feature representative ability. The authors implemented, trained, and compared the proposed method with the other leading learning-based methods on some complicated JSSP instances. The experimental results have confirmed the effectiveness and priority of the proposed method for solving complex JSSP instances in terms of make-span.

Machine Printed and Handwritten Text Discrimination in Korean Document Images

  • Trieu, Son Tung;Lee, Guee Sang
    • Smart Media Journal
    • /
    • v.5 no.3
    • /
    • pp.30-34
    • /
    • 2016
  • Nowadays, there are a lot of Korean documents, which often need to be identified in one of printed or handwritten text. Early methods for the identification use structural features, which can be simple and easy to apply to text of a specific font, but its performance depends on the font type and characteristics of the text. Recently, the bag-of-words model has been used for the identification, which can be invariant to changes in font size, distortions or modifications to the text. The method based on bag-of-words model includes three steps: word segmentation using connected component grouping, feature extraction, and finally classification using SVM(Support Vector Machine). In this paper, bag-of-words model based method is proposed using SURF(Speeded Up Robust Feature) for the identification of machine printed and handwritten text in Korean documents. The experiment shows that the proposed method outperforms methods based on structural features.

A Comparison of performance between SIFT and SURF (SIFT와 SURF의 성능 비교)

  • Lee, Yong-Hwan;Park, Sunghyun;Shin, In-Kyoung;Ahn, Hyochang;Cho, Han-Jin;Lee, June-Hwan;Rhee, Sang-Burm
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2013.11a
    • /
    • pp.1560-1562
    • /
    • 2013
  • 정확하고 강인한 영상 등록(Registration)은 영상 검색과 컴퓨터 비전과 같은 여러 응용 분야에서 성능을 좌우하는 매우 중요한 역할을 담당하며, 특징 추출 및 매칭 단계를 통해 수행된다. 영상의 특징을 관심 점으로 지정하여 추출하는 대표적인 알고리즘으로, SIFT (Scale Invariant Feature Transform)와 SURF (Speeded Up Robust Feature)가 있다. 본 논문에서는 2 개의 특징점 추출 알고리즘을 구현하고 예제 데이터를 기반으로 실험을 통해 성능적 비교 분석을 수행한다. 실험 결과, SURF 알고리즘이 특징 추출 및 매칭, 처리시간 측면에서 SIFT 보다 효율적인 성능을 보였다.

Smart monitoring system with multi-criteria decision using a feature based computer vision technique

  • Lin, Chih-Wei;Hsu, Wen-Ko;Chiou, Dung-Jiang;Chen, Cheng-Wu;Chiang, Wei-Ling
    • Smart Structures and Systems
    • /
    • v.15 no.6
    • /
    • pp.1583-1600
    • /
    • 2015
  • When natural disasters occur, including earthquakes, tsunamis, and debris flows, they are often accompanied by various types of damages such as the collapse of buildings, broken bridges and roads, and the destruction of natural scenery. Natural disaster detection and warning is an important issue which could help to reduce the incidence of serious damage to life and property as well as provide information for search and rescue afterwards. In this study, we propose a novel computer vision technique for debris flow detection which is feature-based that can be used to construct a debris flow event warning system. The landscape is composed of various elements, including trees, rocks, and buildings which are characterized by their features, shapes, positions, and colors. Unlike the traditional methods, our analysis relies on changes in the natural scenery which influence changes to the features. The "background module" and "monitoring module" procedures are designed and used to detect debris flows and construct an event warning system. The multi-criteria decision-making method used to construct an event warring system includes gradient information and the percentage of variation of the features. To prove the feasibility of the proposed method for detecting debris flows, some real cases of debris flows are analyzed. The natural environment is simulated and an event warning system is constructed to warn of debris flows. Debris flows are successfully detected using these two procedures, by analyzing the variation in the detected features and the matched feature. The feasibility of the event warning system is proven using the simulation method. Therefore, the feature based method is found to be useful for detecting debris flows and the event warning system is triggered when debris flows occur.

Semantic Segmentation of Agricultural Crop Multispectral Image Using Feature Fusion (특징 융합을 이용한 농작물 다중 분광 이미지의 의미론적 분할)

  • Jun-Ryeol Moon;Sung-Jun Park;Joong-Hwan Baek
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.2
    • /
    • pp.238-245
    • /
    • 2024
  • In this paper, we propose a framework for improving the performance of semantic segmentation of agricultural multispectral image using feature fusion techniques. Most of the semantic segmentation models being studied in the field of smart farms are trained on RGB images and focus on increasing the depth and complexity of the model to improve performance. In this study, we go beyond the conventional approach and optimize and design a model with multispectral and attention mechanisms. The proposed method fuses features from multiple channels collected from a UAV along with a single RGB image to increase feature extraction performance and recognize complementary features to increase the learning effect. We study the model structure to focus on feature fusion and compare its performance with other models by experimenting with favorable channels and combinations for crop images. The experimental results show that the model combining RGB and NDVI performs better than combinations with other channels.

Sleep Mode Detection for Smart TV using Face and Motion Detection

  • Lee, Suwon;Seo, Yong-Ho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.7
    • /
    • pp.3322-3337
    • /
    • 2018
  • Sleep mode detection is a significant power management and green computing feature. However, it is difficult for televisions and smart TVs to detect deactivation events because we can use these devices without the assistance of an input device. In this paper, we propose a robust method for smart TVs to detect deactivation events based on a visual combination of face and motion detection. The results of experiments conducted indicate that the proposed method significantly reduces incorrect face detection and human absence by means of motion detection. The results also show that the proposed method is robust and effective for smart TVs to reduce power consumption.

Study on User Interface for a Capacitive-Sensor Based Smart Device

  • Jung, Sun-IL;Kim, Young-Chul
    • Smart Media Journal
    • /
    • v.8 no.3
    • /
    • pp.47-52
    • /
    • 2019
  • In this paper, we designed HW / SW interfaces for processing the signals of capacitive sensors like Electric Potential Sensor (EPS) to detect the surrounding electric field disturbance as feature signals in motion recognition systems. We implemented a smart light control system with those interfaces. In the system, the on/off switch and brightness adjustment are controlled by hand gestures using the designed and fabricated interface circuits. PWM (Pulse Width Modulation) signals of the controller with a driver IC are used to drive the LED and to control the brightness and on/off operation. Using the hand-gesture signals obtained through EPS sensors and the interface HW/SW, we can not only construct a gesture instructing system but also accomplish the faster recognition speed by developing dedicated interface hardware including control circuitry. Finally, using the proposed hand-gesture recognition and signal processing methods, the light control module was also designed and implemented. The experimental result shows that the smart light control system can control the LED module properly by accurate motion detection and gesture classification.

A Study on the Design of Low-Code and No Code Platform for Mobile Application Development

  • Chang, Young-Hyun;Ko, Chang-Bae
    • International journal of advanced smart convergence
    • /
    • v.6 no.4
    • /
    • pp.50-55
    • /
    • 2017
  • Workers' demands for new applications, especially mobile applications, are increasing. Many industry analysts, researchers and corporate executives say the demand for mobile applications is becoming increasingly difficult to follow in the IT department. Gartner predicts that by 2021, the demand for mobile application development within the enterprise will increase about five times faster than IT can deliver applications. The purpose of this paper is to provide an environment where non-developers who are in charge of business development can develop apps and webs for their work. The basic concept of a new innovative App development tool, Smart Maker Authoring Tool is to develop Apps on the level using easy-to-learn Word or Excel in a computer. The main feature is that the app is developed by a non-developer worker. The coding technology is perfectly optimized to the structure and operation mechanism of the IT Infra such as hardware devices and operating system, which are the targets for implementing a desired function. Rather, it shows excellent software productivity. The most important feature of future business development is that it is developed by a non-developer worker. In this paper, we propose a no-code and low-code platform for non - developers to develop their business. In the future, we will link the IoT based Arduino system and artificial intelligent interpretation system.

Design of a Recommendation System for Improving Deep Neural Network Performance

  • Juhyoung Sung;Kiwon Kwon;Byoungchul Song
    • Journal of Internet Computing and Services
    • /
    • v.25 no.1
    • /
    • pp.49-56
    • /
    • 2024
  • There have been emerging many use-cases applying recommendation systems especially in online platform. Although the performance of recommendation systems is affected by a variety of factors, selecting appropriate features is difficult since most of recommendation systems have sparse data. Conventional matrix factorization (MF) method is a basic way to handle with problems in the recommendation systems. However, the MF based scheme cannot reflect non-linearity characteristics well. As deep learning technology has been attracted widely, a deep neural network (DNN) framework based collaborative filtering (CF) was introduced to complement the non-linearity issue. However, there is still a problem related to feature embedding for use as input to the DNN. In this paper, we propose an effective method using singular value decomposition (SVD) based feature embedding for improving the DNN performance of recommendation algorithms. We evaluate the performance of recommendation systems using MovieLens dataset and show the proposed scheme outperforms the existing methods. Moreover, we analyze the performance according to the number of latent features in the proposed algorithm. We expect that the proposed scheme can be applied to the generalized recommendation systems.

A Study on Chinese Smart Construction Strategy by SWOT Analysis

  • Peng, Liang;Park, Yoo-Na;Yoo, Moo-Young;Ham, Nam-Hyuk;Kim, Jae-Jun
    • Journal of KIBIM
    • /
    • v.8 no.4
    • /
    • pp.1-12
    • /
    • 2018
  • Nowadays, BIM(Building Information Modeling) technology has been slowly accepted and developed around the world, making smart construction possible. Many countries are also actively promoting the comprehensive application of BIM and changing the traditional construction methods of the construction industry. This study reviews foreign and domestic literature reviews on BIM application barriers and smart construction applications, providing a theoretical basis for Chinese construction enterprises to reduce or eliminate BIM application barriers. Based on the common feature of policies or strategies that promote the development of smart construction in developed countries, such as the United States, the United Kingdom, and Singapore, the deficiencies of China's smart construction policies for construction enterprises are analyzed. Moreover, according to the literature review of the development status of China's construction industry, the SWOT analysis matrix of China's smart construction strategy is obtained. Finally, based on the SWOT matrix analysis results, combined with the development status of China's construction industry and the obstacles faced by smart construction, the portfolio strategies and recommendations for the development of smart construction are proposed in this work. These portfolio strategies and recommendations can provide a reference value for construction enterprises.