• 제목/요약/키워드: Small-sized damper

검색결과 11건 처리시간 0.021초

소형 MR 댐퍼의 모델링 및 진동제어 (Modeling and Vibration Control of Small-sized Magneto-rheological Damper)

  • 이종우;성민상;우제관;최승복
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2012년도 추계학술대회 논문집
    • /
    • pp.344-349
    • /
    • 2012
  • This paper presents a new small-sized damper featuring magneto-rheological (MR) fluid which can be applied to vibration control system. The proposed MR damper consists of cylinder, piston, a couple of bearings, oil-seals and magnetic circuit which has two coils. In this damper, approximately 5cc of MR fluid is used. The damping force of the MR damper is designed to be followed by linear shear-mode Bingham-plastic model. In order to verify the performance of the MR damper, an experimental apparatus is established. In the experimental test, the damping force of the MR damper is measured with respect to time, displacement and velocity. In addition, the time response of MR damper is measured when 1A of step current is applied. Finally, The proposed small MR damper is applied to vibration control. In this process, a simple 1-DOF system is modeled and controlled using PID controller.

  • PDF

소형 MR 댐퍼의 모델링 및 진동제어 (Modeling and Vibration Control of Small-sized Magneto-rheological Damper)

  • 이종우;성민상;우제관;최승복
    • 한국소음진동공학회논문집
    • /
    • 제22권11호
    • /
    • pp.1121-1127
    • /
    • 2012
  • This paper presents a new small-sized damper featuring magneto-rheological(MR) fluid which can be applied to vibration control system. The proposed MR damper consists of cylinder, piston, a couple of bearings, oil-seals and magnetic circuit which has two coils. In this damper, approximately 5cc of MR fluid is used. The damping force of the MR damper is designed to be followed by linear shear-mode Bingham-plastic model. In order to verify the performance of the MR damper, an experimental apparatus is established. In the experimental test, the damping force of the MR damper is measured with respect to time, displacement and velocity. In addition, the time response of MR damper is measured when 1A of step current is applied. Finally, the proposed small MR damper is applied to vibration control. In this process, a simple 1-DOF system is modeled and controlled using PID controller.

SMG 유체를 이용한 소형댐퍼의 성능평가 (Performance Evaluation of Small Dampers Using SMG Fluid)

  • 허광희;전승곤;서상구;김대혁
    • 한국지진공학회논문집
    • /
    • 제23권4호
    • /
    • pp.211-219
    • /
    • 2019
  • In this study, SMG(Smart Material with Grease) was developed, which was improved the precipitation minute particle in grease during long term standstill. Also, small-sized cylinder damper equipped with an electromagnet in a piston was developed for using a performance evaluation of the damper with SMG and the dynamic load test, and damping force using Power model and Bingham model was derived in order to compare to the result of that of the damper. The data obtained from the dynamic load test were analyzed and plotted, and then a dynamic range was calculated to evaluate the usability of the damper with SMG. The performance of the damper with SMG was compared to the damping forse derived from the Power and Bingham model. The result of this evaluation shown that the usability of SMG damper was demonstrated by this test as a semi-active controlling equipment of small-sized damper.

연속가변 ER 댐퍼의 제어 및 응답특성 (Control and Response Characteristics of a Continuously Variable ER Damper)

  • 최승복;최영태;박우철;정재천;서문석;여문수
    • 한국자동차공학회논문집
    • /
    • 제4권6호
    • /
    • pp.164-174
    • /
    • 1996
  • This paper presents control and response characteristics of a continuously variable ER(electrorheological) damper for small-sized vehicles. The ER damper is devised and its governing equation of motion is derived from the bond graph model. The field-dependent yield shear stresses are distilled from experimental investigation on the Bingham property of the ER fluid. The distilled data are incorporated into the governing system model and, on the basis of this model, an appropriate size of the ER damper is manufactured. After evaluating the field-dependent damping performance of the proposed ER damper, the skyhook control algorithm is formulated to achieve desired level of the damping force. The controller is then experimentally implemented and control characteristics of the ER damper are presented in order to demonstrate superior controllability of the damping force. In addition, response characteristics of the damping force with respect to the electric field with fast on-off frequency are provided to show the feasibility of practical application.

  • PDF

ER댐퍼를 이용한 유연 구조물의 진동제어 (Vibration Control of Flexible Structures using ER Fluid Dampers)

  • 이재홍;최승복
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1996년도 추계학술대회논문집; 한국과학기술회관, 8 Nov. 1996
    • /
    • pp.243-247
    • /
    • 1996
  • This paper presents a vibration control of a flexible structure using a controllable ER fluid damper. A clamped-clamped flexible structure system supported by two short columns mimicking a small-sized bridge system is considered. An ER fluid damper which is operated in shear mode is designed and attached to the middle of the flexible structure. The governing equation of motion and associated boundary conditions are derived from Hamilton's principle. A sliding mode control is formulated in order to actively suppress the vibration of the structure due to external excitations. Experimental control results are presented in the frequency domain.

  • PDF

Control Strategy for Modifiable Bipedal Walking on Unknown Uneven Terrain

  • Lee, Woong-Ki;Chwa, Dongkyoung;Hong, Young-Dae
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권6호
    • /
    • pp.1787-1792
    • /
    • 2016
  • Previous walking pattern generation methods could generate walking patterns that allow only straight walking on flat and uneven terrain. They were unable to generate modifiable walking patterns whereby the sagittal and lateral step lengths and walking direction can be changed at every footstep. This paper proposes a novel walking pattern generation method to realize modifiable walking of humanoid robots on unknown uneven terrain. The proposed method employs a walking pattern generator based on the 3-D linear inverted pendulum model (LIPM), which enables a humanoid robot to vary its walking patterns at every footstep. A control strategy for walking on unknown uneven terrain is proposed. Virtual spring-damper (VSD) models are used to compensate for the disturbances that occur between the robot and the terrain when the robot walks on uneven terrain with unknown height. In addition, methods for generating the foot and vertical center of mass (COM) of the 3-D LIPM trajectories are developed to realize stable walking on unknown uneven terrain. The proposed method is implemented on a small-sized humanoid robot platform, DARwIn-OP and its effectiveness is demonstrated experimentally.

보통중심가새골조의 내진보강을 위한 자가복원형 점성감쇠기 시스템 개발 (Development of Self-centering Viscous Damper System for Seismic Retrofit of Ordinary Concentrically Braced Frame)

  • 김도연;최혁순;강주형;이용선
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제27권6호
    • /
    • pp.70-78
    • /
    • 2023
  • 보통중심가새골조는 단순한 설계절차를 갖는 이점이 있다. 이와 같은 이유로, 지진하중에 대한 내진성능이 다른 골조 시스템에 비해 크게 효과적이지 않음에도 불구하고 중간 또는 낮은 수준의 지진을 받는 소규모 골조 구조물에 널리 사용되어 왔다. 횡방향 지진 하에서 압축 거동에 대해 취약한 가새부재를 갖는 보통중심가새골조의 내진성능을 향상시키기 위해, 통상적으로 점성감쇠기에 의한 내진보강이 도입되어 왔다. 하지만, 점성감쇠기 자체는 일반적으로 구조물을 원래 위치로 복원시킬 수 있는 강성을 갖지 않는다. 이는 구조물에 잔류 변위를 유발시킬 수도 있다. 이 논문에서는 휨강성을 갖는 상·하부 보가 비선형-탄성 스프링 역할을 하여 외부 변위 이력을 받는 스프링-감쇠기 시스템을 원래 위치로 복원시키는 자가복원형 점성감쇠기 시스템이 개발되었다. 단순화된 골조 구조물에 대한 수치해석은 개발된 자가복원형 점성감쇠기 시스템을 포함할 경우 지진이 가해지는 동안 에너지 소산을 통해 어떻게 골조 구조물의 향상된 내진성능을 가져오는지 보여준다.

볼 베어링 및 가스 포일 베어링으로 지지되는 소형 고속 전동기의 진동 특성 (Vibrational Characteristics of High-Speed Motors with Ball Bearings and Gas Foil Bearings Supports)

  • 서정화;김태호
    • Tribology and Lubricants
    • /
    • 제35권2호
    • /
    • pp.114-122
    • /
    • 2019
  • High-speed rotating machinery requires low cost and reliable bearing elements with low friction, stable rotordynamic characteristics, and a simple design. This study experimentally evaluates the effects of bearing-support elements on the vibrational characteristics of a small-sized, high-speed permanent magnetic motor. A series of coast down tests from 100 krpm characterize the vibrational behaviors, rotor displacement, and housing acceleration of motors supported by ball bearings, ball bearings with a metal mesh damper, and gas foil bearings, respectively. Two eddy-current sensors installed in the horizontal and vertical directions measure the displacement of the rotor at its front nut, and a 3-axis accelerometer attached to the motor housing measures the housing acceleration. The test results reveal that synchronous (1X) vibration components most significantly affect the rotor displacement and housing acceleration, independent of the bearing-support elements. The motor supported by the deep-groove ball bearings results in the largest rotor vibrations increasing with speed; this is due to the absence of a damping mechanism. Additionally, the metal mesh damper effectively reduces the rotor displacement, housing acceleration, and sound-pressure level in the high-speed region (i.e., above 40 krpm), thus implying its substantial damping performance when installed on the outer race of the ball bearing. Lastly, the gas foil bearing supported motor yields the smallest rotor displacement, housing acceleration, and lowest sound-pressure level because of its hydrodynamic airborne operation, which does not require rolling elements that may cause mechanical friction and vibrations.

An Evolutionary Optimization Approach for Optimal Hopping of Humanoid Robots

  • Hong, Young-Dae
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권6호
    • /
    • pp.2420-2426
    • /
    • 2015
  • This paper proposes an evolutionary optimization approach for optimal hopping of humanoid robots. In the proposed approach, the hopping trajectory is generated by a central pattern generator (CPG). The CPG is one of the biologically inspired approaches, and it generates rhythmic signals by using neural oscillators. During the hopping motion, the disturbance caused by the ground reaction forces is compensated for by utilizing the sensory feedback in the CPG. Posture control is essential for a stable hopping motion. A posture controller is utilized to maintain the balance of the humanoid robot while hopping. In addition, a compliance controller using a virtual spring-damper model is applied for stable landing. For optimal hopping, the optimization of the hopping motion is formulated as a minimization problem with equality constraints. To solve this problem, two-phase evolutionary programming is employed. The proposed approach is verified through computer simulations using a simulated model of the small-sized humanoid robot platform DARwIn-OP.

저음재생용 소형 스피커의 개발에 관한 연구 (A Study on the Small Size Loudspeaker for Hi-Fi Low Frequency Sound Reproduction)

  • 남경준;이채봉;김천덕
    • 한국음향학회지
    • /
    • 제20권8호
    • /
    • pp.31-37
    • /
    • 2001
  • 본 연구는 최근 멀티미디어 기기의 소형화추세에 따라 음향재생 장치인 스피커 시스템을 멀티미디어 시스템의 규격에 적합하게 구성하기 위해 저음재생용 소형스피커의 개발을 목표로 하였다. 연구 방법으로는 등가회로 해석법을 활용하여 기본 공진주파수를 구하고 이에 대응하는 스피커 부품들의 구조적인 변경 및 재질의 변경 등 다수 회의 반복적인 설계, 제작에 의하여 구현되었다. 그 결과로서 저음재생 특성이 우수한 80 mm 소형 동전형 스피커가 개발되었다. 제작된 저음재생용 소형 스피커의 무향실 내에서 성능 측정 결과, 수치 시뮬레이션인 등가회로법에 의한 기본 공진주파수는 81 Hz인 반면 설계 제작된 최적 모델의 기본 공진주파수는 79 Hz로 측정되었다. 그리고 스피커의 전방 1 m 거리에서 음향재생 주파수 대역은 80 Hz ∼ 15 kHz, 평균 음압레벨은 84±2 dB로 나타났다. 그리고 스피커의 음향특성에 있어서 음질에 가장 중요한 영향을 미치는 고조파 왜율은 기존의 전 대역 80 mm 스피커에서의 제 2차 고조파 왜율 (at 400 Hz)은 0.9%, 제 3차 고조파 왜율 (at 100 Hz)은 6%인 반면 본 개발품에서 제 2차 고조파 왜율 (at 400 Hz)은 0.5%, 제 3차 고조파 왜율 (at 100 Hz)이 1.8%로 크게 개선되었다.

  • PDF