• Title/Summary/Keyword: Small-size bus

Search Result 36, Processing Time 0.024 seconds

The theory of lesson plannig and the instructional structuration : A case study for urban units in Japanese high school (수업설계론과 수업구조화 - 일본 고등학교 도시단원을 사례로 -)

  • ;Sim, Kwang Taek
    • Journal of the Korean Geographical Society
    • /
    • v.29 no.2
    • /
    • pp.166-182
    • /
    • 1994
  • Kyonggi Province in the late Chosun dynasty was a center of superior government offices including 'Han' River water-road transportation and was located in the middle of an 'X'-shaped arterial road network. Because of these reasons, Kyonggi Province had a faster inflow of commodities, informations and technics compared with the other province. At this period of time, every local 'Eup' (name of administrative district) had not been affected by their above administrative districts and had their own autonomy. For this reason, every 'Eup' could be developed as a town, even if its size was small when it had sufficient internal growing conditions. Moreover, the markets ('Si-Jon') in big towns and periodical markets which were spread over the Kyonggi Province played role of commercial functions of town. And because military bases for the defence of the royal capital in Kyonggi Province also took parts of a non-agricultural city role, Xyonggi Provinc had much more possibilities of growing as a town rather than the other provinces. The towns of the late Chosun Dynasty were, except the capital and superior administrative districts which were governed by the 'You-Su', small towns which had only about 3, 000-5, 000 people. Most of the town dewellers were local officials, nobles, merchants, craftmen and slaves. And the farmers who lived near town became a pseudo-towner through suburb agriculture. Among these people, the merchants were leaders of townization. The downtowns were affected by the landform and traffic roads. The most fundamental function of towns were administrative. The opcial's grade, which was dispatched to the local administrative district ('Kun' or 'Hyun'), was decided by the size of population and agricultural land of each county. Large county which was governed by a high ranking opcial had more possibilities to develop as a large town. Because they supervised other opcials of lower rank and obtained more land and population for the town. The phonomena of farm abandonment after the Japanese Invasion of Korea in 1592-1598 stimulated the development of towns for commercial function. The commercial functions of towns were evident in the Si-Jon or Nan-Jon (names of markets) in the big cities such as Hansung and Kaesung, meanffwhile in the local areas it was emerged in the shape of periodical market networks as allied with near markets (which were called as Jang-Si) or permanent markets which were grown up from periodical markets. These facts of commercial development induced the birth of commercial town. Kyonggi Province showed the weak points of its defense system during both wars (Japanese Invasion in 1592 and Manchu's Invasion in 1636). The government reinforced its defense system by adding 4 'You-Su-Bus' and several military bases. Each local districts ('Eup'), where Geo-Jins were established, were stimulated to be a town while Jin-Kwan system were, adjusted and enforced. Among Dok-Jins(name of solitary military bases), Youngjongjin was grown up as a large garrison town which only played a role of defense. The number of towns that took roles of non-agricultural functions in Kyonggi Province was 52. Among these towns, 29 were developed as big towns which had above 3, 000 people and most of these towns were located on the northwest-southeast axes of 'X'-shaped arterial trafic network in the Chosn Dynasty, This fact points out that the traffic road is one of the important causes of the development of towns. When we make hierarchy of the towns of Kyonggi Province according to its population and how many functions it had, we can make it as 6 grades. The virst grade town 'Hansung' was the biggest central town of administration, commerce and defdnse. The 2nd grade town includes 'Kaesung' which had historical inertia that it had been the capital of the Koryo Dynesty. The 3rd grade towns include some 'You- Su-Bus' such as Soowon, Kanghwa, Kwangju and also include Mapo, Yongsan and from this we can imagine that the commercial development in the late Chosun Dynasty extremely affected the townization. The 4th-6th grade towns had smiliar population but it can be discriminated by how many town functions it had. So the 4th grade towns were the core of administration, commerce and defense function. 5th grade towns had administrative functions and one of commercial and defense functions. 6th grade towns had only one of these functions. When we research and town conditions of each grades as the ratio of non-agricultural population, we can find out that the towns from the 1st grade to 4th grade show difference by degree of townization but from the 4th grade to 6th grade towns do not show big difference in general.

  • PDF

Development of a Small Animal Positron Emission Tomography Using Dual-layer Phoswich Detector and Position Sensitive Photomultiplier Tube: Preliminary Results (두층 섬광결정과 위치민감형광전자증배관을 이용한 소동물 양전자방출단층촬영기 개발: 기초실험 결과)

  • Jeong, Myung-Hwan;Choi, Yong;Chung, Yong-Hyun;Song, Tae-Yong;Jung, Jin-Ho;Hong, Key-Jo;Min, Byung-Jun;Choe, Yearn-Seong;Lee, Kyung-Han;Kim, Byung-Tae
    • The Korean Journal of Nuclear Medicine
    • /
    • v.38 no.5
    • /
    • pp.338-343
    • /
    • 2004
  • Purpose: The purpose of this study was to develop a small animal PET using dual layer phoswich detector to minimize parallax error that degrades spatial resolution at the outer part of field-of-view (FOV). Materials and Methods: A simulation tool GATE (Geant4 Application for Tomographic Emission) was used to derive optimal parameters of small PET, and PET was developed employing the parameters. Lutetium Oxyorthosilicate (LSO) and Lutetium-Yttrium Aluminate-Perovskite(LuYAP) was used to construct dual layer phoswitch crystal. $8{\times}8$ arrays of LSO and LuYAP pixels, $2mm{\times}2mm{\times}8mm$ in size, were coupled to a 64-channel position sensitive photomultiplier tube. The system consisted of 16 detector modules arranged to one ring configuration (ring inner diameter 10 cm, FOV of 8 cm). The data from phoswich detector modules were fed into an ADC board in the data acquisition and preprocessing PC via sockets, decoder block, FPGA board, and bus board. These were linked to the master PC that stored the events data on hard disk. Results: In a preliminary test of the system, reconstructed images were obtained by using a pair of detectors and sensitivity and spatial resolution were measured. Spatial resolution was 2.3 mm FWHM and sensitivity was 10.9 $cps/{\mu}Ci$ at the center of FOV. Conclusion: The radioactivity distribution patterns were accurately represented in sinograms and images obtained by PET with a pair of detectors. These preliminary results indicate that it is promising to develop a high performance small animal PET.

A Study on Determinants of Commercial Land Values in Gwangju City (광주시 상업지 지가의 형성요인에 관한 연구)

  • Lee, Hyun-Wook
    • Journal of the Korean association of regional geographers
    • /
    • v.2 no.2
    • /
    • pp.159-171
    • /
    • 1996
  • The aim of this study is which factors affect the commercial land values and how they act upon them through distribution of commercial land values by multiple regression analysis in Gwangju city. The major findings of this study are as follows: (1) The changes of commercial land values distribution in $1989{\sim}1996$, We see that the commercial area of higher land values extends following the main arterial road. This is related to urbanization in urban fringe while the decline of commercial land values occurs in city center with long history of commercial region. This is due to unsuitableness in rapid changes of commercial environment because of fragmented lots, old buildings. traffic congestion etc. (2) The regions where commercial land values greatly rose are the west in constructed the new planning city center of Sangmu-dong. and the south west in which is related to the extension of high density apartment and the location of big discount stores. (3) Through the changes in commercial land values distribution map. and road map, topographical map, we know that commercial land values is related to various factors; namely, distance from CBD, convenient traffic, reputation of commercial district, condition of a road, size of supplementary, a degree of commercial land use etc. (4) From the above related factor, six variables are extracted by operational definition. That is the spatial distance from the city center, the walking distance to a stopping place, the road width, the amount of bus traffic, the amount of pedestrian, the number of the shop. (5) Data of seven variables are collected on the highest values point of each Dong. We applicate multiple regression analysis with commercial land values as a dependent variable, extracted six variables as independent variables. (6) As a result of multiple regression on the determinants of commercial land values, the variables which is greatly related to commercial land values are the amount of pedestrain, the spatial distance from city center. We identify that two variables explain variance of the commercial land values by 65%. (7) In order to make clear about not explained 35%. we carry out analysis of residual. In consequence, we see small estimate in downtown area and large estimate in urban fringe. This feature is due to simple core structure of Gwangju city and limits of this regression model.

  • PDF

The Results of Treatment for Motor Vehicle-related Crushing Injuries of Foot in Children (교통사고에 의한 소아 족부 압궤손상에 대한 치료결과)

  • Hahn, Soo-Bong;Kim, Hong-Kyun
    • Archives of Reconstructive Microsurgery
    • /
    • v.16 no.2
    • /
    • pp.113-118
    • /
    • 2007
  • Purpose: The purpose of this work was to describe the results of treatment for motor vehiclerelated crushing injuries among children and adolescents under sixteen years in Korea. Materials and Methods: A retrospective analysis was conducted of data from children who were under sixteen year and injured foot by motor vehicles. Cases were documented 1) age at the time of injury, 2) injured site, 3) the area of accident, 4) the kind of vehicle, 5) associated injuries, 6) methods of treatment for soft tissue reconstruction and 7) complications. The relationships between the area of accident and associated injuries, and the kind of vehicle and associated injuries were analyzed using Chi-square test and Fisher exact test. Results: There were 97 children who were 15 year and younger. The mean age was 7.4 years, and 65% were boys. The left foot was more dominant side of injury (57%). Seasonal variation was seen with the number of injuries peaking during the summer (43%, p<0.05). Among the vehicles, 78.3% were the large vehicles (bus, truck or van). The where of accident was more frequent at an alley or less than two lanes of traffic. But, the relationships between the place of accident and associated injury or the kind of vehicles and associated injury were not statistically significant. The associated injury were fracture or dislocation (23 cases, 35.9%), injury of tendon (21 cases, 32.8%). There were amputation or disarticulation of foot in 8 cases (8.2%) and post-traumatic deformities such as flatfoot, hindfoot varus or valus deformities by tendon injury in 7 cases (7.2%). Conclusion: More than 50% of crushing or degloving injuries of child's foot by traffic accidents happened in boys between 5 to 9 years old. The associated injury was unrelated with size of vehicles or accident place at the time of accident. But, even though foot injury happened in an alley or one lane by small vehicles, child who hurt feet by car need thorough investigation about associated injury. If a surgeon keep in mind and treat child to associated injury necessarily, can minimize complication. Microsurgical reconstruction for soft tissue defect was prior to other methods.

  • PDF

Memory Organization for a Fuzzy Controller.

  • Jee, K.D.S.;Poluzzi, R.;Russo, B.
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1041-1043
    • /
    • 1993
  • Fuzzy logic based Control Theory has gained much interest in the industrial world, thanks to its ability to formalize and solve in a very natural way many problems that are very difficult to quantify at an analytical level. This paper shows a solution for treating membership function inside hardware circuits. The proposed hardware structure optimizes the memoried size by using particular form of the vectorial representation. The process of memorizing fuzzy sets, i.e. their membership function, has always been one of the more problematic issues for the hardware implementation, due to the quite large memory space that is needed. To simplify such an implementation, it is commonly [1,2,8,9,10,11] used to limit the membership functions either to those having triangular or trapezoidal shape, or pre-definite shape. These kinds of functions are able to cover a large spectrum of applications with a limited usage of memory, since they can be memorized by specifying very few parameters ( ight, base, critical points, etc.). This however results in a loss of computational power due to computation on the medium points. A solution to this problem is obtained by discretizing the universe of discourse U, i.e. by fixing a finite number of points and memorizing the value of the membership functions on such points [3,10,14,15]. Such a solution provides a satisfying computational speed, a very high precision of definitions and gives the users the opportunity to choose membership functions of any shape. However, a significant memory waste can as well be registered. It is indeed possible that for each of the given fuzzy sets many elements of the universe of discourse have a membership value equal to zero. It has also been noticed that almost in all cases common points among fuzzy sets, i.e. points with non null membership values are very few. More specifically, in many applications, for each element u of U, there exists at most three fuzzy sets for which the membership value is ot null [3,5,6,7,12,13]. Our proposal is based on such hypotheses. Moreover, we use a technique that even though it does not restrict the shapes of membership functions, it reduces strongly the computational time for the membership values and optimizes the function memorization. In figure 1 it is represented a term set whose characteristics are common for fuzzy controllers and to which we will refer in the following. The above term set has a universe of discourse with 128 elements (so to have a good resolution), 8 fuzzy sets that describe the term set, 32 levels of discretization for the membership values. Clearly, the number of bits necessary for the given specifications are 5 for 32 truth levels, 3 for 8 membership functions and 7 for 128 levels of resolution. The memory depth is given by the dimension of the universe of the discourse (128 in our case) and it will be represented by the memory rows. The length of a world of memory is defined by: Length = nem (dm(m)+dm(fm) Where: fm is the maximum number of non null values in every element of the universe of the discourse, dm(m) is the dimension of the values of the membership function m, dm(fm) is the dimension of the word to represent the index of the highest membership function. In our case then Length=24. The memory dimension is therefore 128*24 bits. If we had chosen to memorize all values of the membership functions we would have needed to memorize on each memory row the membership value of each element. Fuzzy sets word dimension is 8*5 bits. Therefore, the dimension of the memory would have been 128*40 bits. Coherently with our hypothesis, in fig. 1 each element of universe of the discourse has a non null membership value on at most three fuzzy sets. Focusing on the elements 32,64,96 of the universe of discourse, they will be memorized as follows: The computation of the rule weights is done by comparing those bits that represent the index of the membership function, with the word of the program memor . The output bus of the Program Memory (μCOD), is given as input a comparator (Combinatory Net). If the index is equal to the bus value then one of the non null weight derives from the rule and it is produced as output, otherwise the output is zero (fig. 2). It is clear, that the memory dimension of the antecedent is in this way reduced since only non null values are memorized. Moreover, the time performance of the system is equivalent to the performance of a system using vectorial memorization of all weights. The dimensioning of the word is influenced by some parameters of the input variable. The most important parameter is the maximum number membership functions (nfm) having a non null value in each element of the universe of discourse. From our study in the field of fuzzy system, we see that typically nfm 3 and there are at most 16 membership function. At any rate, such a value can be increased up to the physical dimensional limit of the antecedent memory. A less important role n the optimization process of the word dimension is played by the number of membership functions defined for each linguistic term. The table below shows the request word dimension as a function of such parameters and compares our proposed method with the method of vectorial memorization[10]. Summing up, the characteristics of our method are: Users are not restricted to membership functions with specific shapes. The number of the fuzzy sets and the resolution of the vertical axis have a very small influence in increasing memory space. Weight computations are done by combinatorial network and therefore the time performance of the system is equivalent to the one of the vectorial method. The number of non null membership values on any element of the universe of discourse is limited. Such a constraint is usually non very restrictive since many controllers obtain a good precision with only three non null weights. The method here briefly described has been adopted by our group in the design of an optimized version of the coprocessor described in [10].

  • PDF

Tie Spatial Structure of Ch'ang-ts'ai-ts'un Village A Case Study on a Rural Village of Korean Immigrants in Yen-pien Area of China (중국(中國) 연변지구(延邊地區) 조선족(朝鮮族)마을의 구성(構成) 룡정시 지신향 장재촌을 대상으로)

  • Lee, Kyu Sung
    • Journal of architectural history
    • /
    • v.3 no.1
    • /
    • pp.83-99
    • /
    • 1994
  • Ch'ang-Ts'al-Ts'un is a rural Village near Lung-jing City in Yen-pien Korean Autonomous Province of China. It was formed about 100 years ago by Korean Immigrants and has been developed maintaing the characteristics of traditional Korean architecture. Therefore investigating the spatial structure of this village is a meanigful work to confirm and explore one branch of Korean architecture. This study aims at analyzing the spatial structure of the village using direct data collected from the field work and indirect data from books and maps. The field work consists of on-the-site survey of the village layout, interviews of residents, observation notes and photography. Ch'ang-Ts'ai-Ts'un is located 360-370 m high above the sea level and at the side of a long valley. A river flows in the middle of the valley and relatively flat arable land exists at the both sides of the river. The location of the village related to the surrounding river and mountains suggests that the site of the village was chosen according to Feng-Shui, Chinese and Korean traditional architectural theory. The main direction of the house layouts is South-western. The village has been growing gradually until today. Therefore it is meaningful to make the village layout before Liberation(1946 A.D.) because the characteristics of Korean architecture prevailed more in that period. The area of the previous village is limited to the west side of the creek. New houses were later added to the east of the creek, forming a 'New Village'. Previously the village was composed of 3 small villages: Up, Middle and Down. Also the main access roads connecting the village with the neighboring villages were penetrating the village transversely. Presently the main access road comes to the village longitudinally from the main highway located in front of the village. The retrospective layout shows the existence of well-formed Territory, Places and Axes, thus suggesting a coherent Micro-cosmos. The boundary of imaginery territory perceived by present residents could be defined by linking conspicous outside places sorrounding the village such as Five-mountains, Front-mountain, Shin-dong village, Standing-rock, Rear-mountain and Myong-dong village. Inside the territory there are also the important places such as Bus-stop, Memorial tower of patriots, Road-maitenance building and the village itself. And inside it 5 transverse and 1 longitudinal axes exist in the form of river, roads and mountains. The perceived spatial structure of the village formed by Places, Axes and Territory is geometrical and well-balanced and suggests this village is fit for human settlement. The administrative area of the village is about 738 ha, 27 % of which is cultivated land and the rest is mountain area. Initially the village and surrounndings were covered with natural forest But the trees have been gradually cut down for building and warning houses, resulting in the present barren and artificial landscape with bare mountains and cultivated land. At present the area of the village occupied by houses is wedge-shaped, 600 m wide and 220 m deep in its maximum. The total area of the village is $122,175m^{2}$. The area and the rate of each sub-division arc as follow. 116 house-lots $91,465m^{2}$ (74.9 %) Land for public buildings and shops $2,980m^{2}$ (2.4 %) Roads $17,106m^{2}$ (14.0 %) Creek $1,356m^{2}$ (1.1 %) Vacant spaces and others $9,268m^{2}$ (7.6 %) TOTAL $122,175m^{2}$ (100.0 %) Each lot is fenced around with vertical wooden pannels 1.5-1.8 m high and each house is located to the backside of the lot. The open space of a lot is sub-divided into three areas using the same wooden fence: Front yard, Back yard and Access area. Front and back yards are generally used for crop-cultivation, the custom of which is rare in Korea. The number of lots is 116 and the average size of area is $694.7m^{2}$. Outdoor spaces in the village such as roads, vacant spaces, front yard of the cultural hall, front yard of shops and spacse around the creek are good 'behavioral settings' frequently used by residents for play, chatting, drinking and movie-watching. The road system of the village is net-shaped, having T-junctions in intersections. The road could be graded to 4 categories according to their functions: Access roads, Inner trunk roads, Connecting roads and Culs-de-sac. The total length of the road inside the village is 3,709 m and the average width is 4.6 m. The main direction of the road in the village is NNE-SSE and ESE-WNW, crossing with right angles. Conclusively, the spatial structure of Ch'ang-Ts'ai-Ts'un village consists of various components in different dimensions and these components form a coherent structure in each dimension. Therefore the village has a proper spatial structure meaningful and appropriate for human living.

  • PDF