• Title/Summary/Keyword: Small-scale capture

Search Result 63, Processing Time 0.026 seconds

Conservation and techniques of small-scale capture fisheries based on ecosystem approach to fisheries management method in Indonesia

  • Gunardi Djoko Winarno;Sahda Salsabila
    • Fisheries and Aquatic Sciences
    • /
    • v.27 no.8
    • /
    • pp.488-500
    • /
    • 2024
  • The purpose of this research is to analyze the conservation aspects of fishing techniques in small-scale fishing activities in Labuhan Maringgai. The research was conducted from August to November 2022 in Muara Gading Mas village, Labuhan Maringgai, eastern Lampung. The Ecosystem Approach to Fisheries Management (EAFM) was employed as the methodology. The secondary data utilized in this study consisted of fisheries record books and fisheries monitoring reports. The indicator aspects cover 6 domains, namely: Habitat, Fish Resources, Fishing Technology, Social, Economic and Institutional. By employing the EAFM domain value classification, the fisheries management status was determined to be of medium level, with a total aggregate value of 1,204.3. However, the small-scale capture fisheries in Labuhan Maringgai, East Lampung, were categorized as medium status, but with values that tended to be low, particularly in the social domain composite value. This can be attributed to conflicts of interest, compliance levels, and efforts in capacity building.

Research on the efficient illumination method in iris recognition at a distance (원거리 홍채 인식에서 효율적 조명 조사방법에 관한 연구)

  • Jo, Hyun-Su;Bae, Kwang-Hyuk;Park, Kang-Ryoung;Kim, Jai-Hie
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.969-970
    • /
    • 2008
  • This paper proposes illumination-efficient iris image capturing method. face capture method for extraction of iris pattern with one high resolution camera needs a large scale near infrared illumination. we replace high-resolution camera with co-optic-axial combination between wide view camera and narrow view camera. because this method needs small scale illumination that illuminate only narrow camera viewing angle, we can capture iris pattern image with small scale near infrared illumination.

  • PDF

Hybrid adaptive neuro-fuzzy inference system method for energy absorption of nano-composite reinforced beam with piezoelectric face-sheets

  • Lili Xiao
    • Advances in nano research
    • /
    • v.14 no.2
    • /
    • pp.141-154
    • /
    • 2023
  • Effects of viscoelastic foundation on vibration of curved-beam structure with clamped and simply-supported boundary conditions is investigated in this study. In doing so, a micro-scale laminate composite beam with two piezoelectric face layer with a carbon nanotube reinforces composite core is considered. The whole beam structure is laid on a viscoelastic substrate which normally occurred in actual conditions. Due to small scale of the structure non-classical elasticity theory provided more accurate results. Therefore, nonlocal strain gradient theory is employed here to capture both nano-scale effects on carbon nanotubes and microscale effects because of overall scale of the structure. Equivalent homogenous properties of the composite core is obtained using Halpin-Tsai equation. The equations of motion is derived considering energy terms of the beam and variational principle in minimizing total energy. The boundary condition is assumed to be clamped at one end and simply supported at the other end. Due to nonlinear terms in the equations of motion, semi-analytical method of general differential quadrature method is engaged to solve the equations. In addition, due to complexity in developing and solving equations of motion of arches, an artificial neural network is design and implemented to capture effects of different parameters on the inplane vibration of sandwich arches. At the end, effects of several parameters including nonlocal and gradient parameters, geometrical aspect ratios and substrate constants of the structure on the natural frequency and amplitude is derived. It is observed that increasing nonlocal and gradient parameters have contradictory effects of the amplitude and frequency of vibration of the laminate beam.

Flexoelectric effects on dynamic response characteristics of nonlocal piezoelectric material beam

  • Kunbar, Laith A. Hassan;Alkadhimi, Basim Mohamed;Radhi, Hussein Sultan;Faleh, Nadhim M.
    • Advances in materials Research
    • /
    • v.8 no.4
    • /
    • pp.259-274
    • /
    • 2019
  • Flexoelectric effect has a major role on mechanical responses of piezoelectric materials when their dimensions become submicron. Applying differential quadrature (DQ) method, the present article studies dynamic characteristics of a small scale beam made of piezoelectric material considering flexoelectric effect. In order to capture scale-dependency of such piezoelectric beams, nonlocal elasticity theory is utilized and also surface effects are included for better structural modeling. Governing equations have been derived by utilizing Hamilton's rule with the assumption that the scale-dependent beam is subjected to thermal environment leading to uniform temperature variation across the thickness. Obtained results based on DQ method are in good agreement with previous data on pizo-flexoelectric beams. Finally, it would be indicated that dynamic response characteristics and vibration frequencies of the nano-size beam depends on the existence of flexoelectric influence and the magnitude of scale factors.

A Hierarchical Model for Mobile Ad Hoc Network Performability Assessment

  • Zhang, Shuo;Huang, Ning;Sun, Xiaolei;Zhang, Yue
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.8
    • /
    • pp.3602-3620
    • /
    • 2016
  • Dynamic topology is one of the main influence factors on network performability. However, it was always ignored by the traditional network performability assessment methods when analyzing large-scale mobile ad hoc networks (MANETs) because of the state explosion problem. In this paper, we address this problem from the perspective of complex network. A two-layer hierarchical modeling approach is proposed for MANETs performability assessment, which can take both the dynamic topology and multi-state nodes into consideration. The lower level is described by Markov reward chains (MRC) to capture the multiple states of the nodes. The upper level is modeled as a small-world network to capture the characteristic path length based on different mobility and propagation models. The hierarchical model can promote the MRC of nodes into a state matrix of the whole network, which can avoid the state explosion in large-scale networks assessment from the perspective of complex network. Through the contrast experiments with OPNET simulation based on specific cases, the method proposed in this paper shows satisfactory performance on accuracy and efficiency.

Investigation of Moving Angle of Power Take off Mechanism on the Efficiency of Wave Energy Converter (파력발전기의 동력인출장치의 회전각도가 효율에 미치는 영향 분석)

  • Do, H.T.;Nguyen, M.T.;Phan, C.B.;Lee, S.Y.;Park, H.G.;Ahn, K.K.
    • Journal of Drive and Control
    • /
    • v.12 no.3
    • /
    • pp.25-35
    • /
    • 2015
  • The hydraulic power-take-off mechanism (HPTO) is one of the most popular methods in wave energy converters (WECs). However, the conventional HPTO with only one direction motion has a number of drawbacks that limit its power capture capability. This paper proposes an adjustable moving angle wave energy converter (AMAWEC) and investigates the effect of the moving angle on the performance of the wave energy converter to find the optimal moving angle in order to increase the power capture capability as well as energy efficiency. A mathematical model of components from a floating buoy to a hydraulic motor was modeled. A small scale WEC test rig was fabricated to verify the power capture capability and efficiency of the proposed system through experiments.

Assessment of Water Quality Calibration Criteria for Field-Scale Water Quality Model

  • Seong, Choung-Hyun;Kim, Sang-Min;Park, Seung-Woo;Park, Tae-Yang;Kim, Sung-Jae;Jung, Ki-Woong
    • Journal of agriculture & life science
    • /
    • v.44 no.5
    • /
    • pp.101-107
    • /
    • 2010
  • The objective of this study was to assess the statistics and associated criteria for field-scale model used to simulate nutrient concentrations in paddy field. CREAMS-PADDY, a modified version of the field-scale CREAMS model, simulates the hydrologic, sediment, and nutrient cycles in paddy fields was applied in this study. The model was calibrated and validated using data from study rice paddy fields in Republic of Korea. The calibration statistics include mean and the minimum-maximum range associated with a "temporal window" that spans a period of several days. Because nutrient concentrations in paddy filed are typically sampled infrequently (on a weekly basis, at best) and represent only an instant in time, it is not reasonable to expect any model to simulate a daily average concentration equal to an observed value on a particular day. The 5-day window and related calibration statistics were applied in this study and the applicability of this concept was tested for field-scale water quality model. As a result of calibration and validation, the ponded water nutrient concentration values showed only small changes except the fertilization period. Because of the small changes in ponded water concentration, the size of 5-day window was too small to capture the observed values. Further study is required to establish the 5-day window calibration method for field-scale water quality modeling.

On bending, buckling and vibration of graphene nanosheets based on the nonlocal theory

  • Liu, Jinjian;Chen, Ling;Xie, Feng;Fan, Xueliang;Li, Cheng
    • Smart Structures and Systems
    • /
    • v.17 no.2
    • /
    • pp.257-274
    • /
    • 2016
  • The nonlocal static bending, buckling, free and forced vibrations of graphene nanosheets are examined based on the Kirchhoff plate theory and Taylor expansion approach. The nonlocal nanoplate model incorporates the length scale parameter which can capture the small scale effect. The governing equations are derived using Hamilton's principle and the Navier-type solution is developed for simply-supported graphene nanosheets. The analytical results are proposed for deflection, natural frequency, amplitude of forced vibration and buckling load. Moreover, the effects of nonlocal parameter, half wave number and three-dimensional sizes on the static, dynamic and stability responses of the graphene nanosheets are discussed. Some illustrative examples are also addressed to verify the present model, methodology and solution. The results show that the new nanoplate model produces larger deflection, smaller circular frequencies, amplitude and buckling load compared with the classical model.

Performance Analysis of Absorbent for Post-combustion CO2 Capture by Regeneration (연소 후 CO2 포집을 위한 흡수제의 재생반응에 의한 성능 해석)

  • KIL, TAEHYOUNG;LEE, DONGHO;JO, SUNGHO;YI, CHANGKEUN;PARK, YEONGSEONG;RYU, HOJUNG
    • Journal of Hydrogen and New Energy
    • /
    • v.27 no.1
    • /
    • pp.83-94
    • /
    • 2016
  • Performance of absorbent for post-combustion $CO_2$ capture was measured and discussed. Fully saturated fresh absorbent (P2-15F) and absorbents sampled from absorption and regeneration reactor of continuous $CO_2$ capture process, P2-15A, P2-15R, respectively, were used as representative absorbents. Small scale fluidized bed reactor (0.05 m I.D., 0.8 m high) which can measure exhaust gas concentration and weight change simultaneously was used to analyze regeneration characteristics for those absorbents. Exhausted moles of $CO_2$ and $H_2O$ were measured with increasing temperature. $H_2O/CO$ ratio and working capacity were determined and discussed to confirm reason of reactivity decay after continuous operation. Moreover, possibility of side reaction was checked based on the $H_2O/CO_2$ mole ratio. Finally, suitable regeneration temperature range was confirmed based on the trend of working capacity with temperature.

Buckling and free vibration analysis of FG-CNTRC-micro sandwich plate

  • Kolahdouzan, Farzad;Arani, Ali Ghorbanpour;Abdollahian, Mohammad
    • Steel and Composite Structures
    • /
    • v.26 no.3
    • /
    • pp.273-287
    • /
    • 2018
  • Buckling and free vibration analysis of sandwich micro plate (SMP) integrated with piezoelectric layers embedded in orthotropic Pasternak are investigated in this paper. The refined Zigzag theory (RZT) is taken into consideration to model the SMP. Four different types of functionally graded (FG) distribution through the thickness of the SMP core layer which is reinforced with single-wall carbon nanotubes (SWCNTs) are considered. The modified couple stress theory (MCST) is employed to capture the effects of small scale effects. The sandwich structure is exposed to a two dimensional magnetic field and also, piezoelectric layers are subjected to external applied voltages. In order to obtain governing equation, energy method as well as Hamilton's principle is applied. Based on an analytical solution the critical buckling loads and natural frequency are obtained. The effects of volume fraction of carbon nanotubes (CNTs), different distributions of CNTs, foundation stiffness parameters, magnetic and electric fields, small scale parameter and the thickness of piezoelectric layers on the both critical buckling loads and natural frequency of the SMP are examined. The obtained results demonstrate that the effects of volume fraction of CNTs play an important role in analyzing buckling and free vibration behavior of the SMP. Furthermore, the effects of magnetic and electric fields are remarkable on the mechanical responses of the system and cannot be neglected.