• Title/Summary/Keyword: Small-Signal Parameters

Search Result 200, Processing Time 0.025 seconds

A Study of Dark Photon at the Electron-Positron Collider Experiments Using KISTI-5 Supercomputer

  • Park, Kihong;Cho, Kihyeon
    • Journal of Astronomy and Space Sciences
    • /
    • v.38 no.1
    • /
    • pp.55-63
    • /
    • 2021
  • The universe is well known to be consists of dark energy, dark matter and the standard model (SM) particles. The dark matter dominates the density of matter in the universe. The dark matter is thought to be linked with dark photon which are hypothetical hidden sector particles similar to photons in electromagnetism but potentially proposed as force carriers. Due to the extremely small cross-section of dark matter, a large amount of data is needed to be processed. Therefore, we need to optimize the central processing unit (CPU) time. In this work, using MadGraph5 as a simulation tool kit, we examined the CPU time, and cross-section of dark matter at the electron-positron collider considering three parameters including the center of mass energy, dark photon mass, and coupling constant. The signal process pertained to a dark photon, which couples only to heavy leptons. We only dealt with the case of dark photon decaying into two muons. We used the simplified model which covers dark matter particles and dark photon particles as well as the SM particles. To compare the CPU time of simulation, one or more cores of the KISTI-5 supercomputer of Nurion Knights Landing and Skylake and a local Linux machine were used. Our results can help optimize high-energy physics software through high-performance computing and enable the users to incorporate parallel processing.

Adaptation of the parameters of the physical layer of data transmission in self-organizing networks based on unmanned aerial vehicles

  • Surzhik, Dmitry I.;Kuzichkin, Oleg R.;Vasilyev, Gleb S.
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.6
    • /
    • pp.23-28
    • /
    • 2021
  • The article discusses the features of adaptation of the parameters of the physical layer of data transmission in self-organizing networks based on unmanned aerial vehicles operating in the conditions of "smart cities". The concept of cities of this type is defined, the historical path of formation, the current state and prospects for further development in the aspect of transition to "smart cities" of the third generation are shown. Cities of this type are aimed at providing more comfortable and safe living conditions for citizens and autonomous automated work of all components of the urban economy. The perspective of the development of urban mobile automated technical means of infocommunications is shown, one of the leading directions of which is the creation and active use of wireless self-organizing networks based on unmanned aerial vehicles. The advantages of using small-sized unmanned aerial vehicles for organizing networks of this type are considered, as well as the range of tasks to be solved in the conditions of modern "smart cities". It is shown that for the transition to self-organizing networks in the conditions of "smart cities" of the third generation, it is necessary to ensure the adaptation of various levels of OSI network models to dynamically changing operating conditions, which is especially important for the physical layer. To maintain an acceptable level of the value of the bit error probability when transmitting command and telemetry data, it is proposed to adaptively change the coding rate depending on the signal-to-noise ratio at the receiver input (or on the number of channel decoder errors), and when transmitting payload data, it is also proposed to adaptively change the coding rate together with the choice of modulation methods that differ in energy and spectral efficiency. As options for the practical implementation of these solutions, it is proposed to use an approach based on the principles of neuro-fuzzy control, for which examples of determining the boundaries of theoretically achievable efficiency are given.

A Study on the Effect of Controllers in Small Signal Stability of Power Systems (전력계통의 미소신호안정도에 미치는 제어기의 영향에 관한 연구)

  • 권세혁;김덕영
    • Journal of Energy Engineering
    • /
    • v.5 no.1
    • /
    • pp.72-79
    • /
    • 1996
  • The effect of controllers-Exciter, Power System Stabilizer, and Static Var Compensator-in one machine infinite bus system is investigated in this paper. The structure of generator state matrix with controllers is represented, while the Static Var Compensator is installed in generator terminal bus. Eigen-value analysis is performed and the effects of controllers to the dominant eigenvalue in one machine infinite bus system are represented by first order eigenvalue sensitivity coefficients while the operating conditions of the system are varied. Optimization of controller parameters using first order eigenvalue sensitivity coefficients is performed by the Simplex Method. It is proved that exciter control is the most efficient method to improve stability of the system and the effect of Static Var Compensator is small, in the case of one machine infinite bus system.

  • PDF

Design of a Holter Monitoring System with Flash Memory Card (플레쉬 메모리 카드를 이용한 홀터 심전계의 설계)

  • 송근국;이경중
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.3
    • /
    • pp.251-260
    • /
    • 1998
  • The Holter monitoring system is a widely used noninvasive diagnostic tool for ambulatory patient who may be at risk from latent life-threatening cardiac abnormalities. In this paper, we design a high performance intelligent holter monitoring system which is characterized by the small-sized and the low-power consumption. The system hardware consists of one-chip microcontroller(68HC11E9), ECG preprocessing circuit, and flash memory card. ECG preprocessing circuit is made of ECG preamplifier with gain of 250, 500 and 1000, the bandpass filter with bandwidth of 0.05-100Hz, the auto-balancing circuit and the saturation-calibrating circuit to eliminate baseline wandering, ECG signal sampled at 240 samples/sec is converted to the digital signal. We use a linear recursive filter and preprocessing algorithm to detect the ECG parameters which are QRS complex, and Q-R-T points, ST-level, HR, QT interval. The long-term acquired ECG signals and diagnostic parameters are compressed by the MFan(Modified Fan) and the delta modulation method. To easily interface with the PC based analyzer program which is operated in DOS and Windows, the compressed data, that are compatible to FFS(flash file system) format, are stored at the flash memory card with SBF(symmetric block format).

  • PDF

HRV Evaluation under Stress Condition by Using Patch Type Bipolar Heart Activity Monitoring System (패치형 바이폴라 심장활동 모니터링 시스템을 이용한 스트레스 상태의 HRV 평가)

  • Yang, Heui-Kyung;Lee, Jeong-Whan;Lee, Young-Jae;Kim, Kyeong-Seop;Lee, Kang-Hwi;Choi, Hee-Jung
    • Science of Emotion and Sensibility
    • /
    • v.12 no.2
    • /
    • pp.161-168
    • /
    • 2009
  • In this study, we have developed the patch type HAMS (Heart Activity Monitoring System) which is non-restricted, non-awarable and non-invasive. The module using wireless telecommunication to receive the ECG (electrocardiogram) signal at the computer has mobility which it easily monitors the heart activity of subjects in no time for long term at any time and places. We developed the small patch type electrode which can be attached on the chest. Also the reliability and moving artifact of ECG signal measured by this electrode have been verified. Using HAMS, we measured the HRV (Heart Rate Variability) parameters, the questionnaire evaluation for anxiety and stress and the amount of stress hormone (cotisol) to evaluate the stress effect in HRV on the same subject. As a result of comparing the values under non stressed and stressed condition, there was significant difference on many parameters. And the parameter highly related with stress on Pearson's Correlation Coefficient has been examined. These show that using HAMS is able to evaluate the function of autonomic nervous system. Therefore, we can predict heart problem in daily life by using HAMS. Also we expect that this module can be applied for more application as health monitoring system.

  • PDF

Dilated convolution and gated linear unit based sound event detection and tagging algorithm using weak label (약한 레이블을 이용한 확장 합성곱 신경망과 게이트 선형 유닛 기반 음향 이벤트 검출 및 태깅 알고리즘)

  • Park, Chungho;Kim, Donghyun;Ko, Hanseok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.5
    • /
    • pp.414-423
    • /
    • 2020
  • In this paper, we propose a Dilated Convolution Gate Linear Unit (DCGLU) to mitigate the lack of sparsity and small receptive field problems caused by the segmentation map extraction process in sound event detection with weak labels. In the advent of deep learning framework, segmentation map extraction approaches have shown improved performance in noisy environments. However, these methods are forced to maintain the size of the feature map to extract the segmentation map as the model would be constructed without a pooling operation. As a result, the performance of these methods is deteriorated with a lack of sparsity and a small receptive field. To mitigate these problems, we utilize GLU to control the flow of information and Dilated Convolutional Neural Networks (DCNNs) to increase the receptive field without additional learning parameters. For the performance evaluation, we employ a URBAN-SED and self-organized bird sound dataset. The relevant experiments show that our proposed DCGLU model outperforms over other baselines. In particular, our method is shown to exhibit robustness against nature sound noises with three Signal to Noise Ratio (SNR) levels (20 dB, 10 dB and 0 dB).

MTJ Performance Analysis of Hybrid DS/SFH Spread-Spectrum System using MSK or QPSK Modulation over Rayleigh Fading Channel (레이리 페이딩 채널상에서 MSK 혹은 QPSK 변조 방식의 하이브리드 DS/SFH 확산 스펙트럼 시스템의 다중톤 재밍 성능 분석)

  • Ryu, Heung-Gyoon;Chung, Byung-Ki
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.5
    • /
    • pp.492-499
    • /
    • 2002
  • Performance analysis and comparison of the hybrid DS-SFH spread-spectrum (SS) system using coherent MSK and QPSK modulation techniques over Rayleigh fading channel are considered in the presence of MTJ(multi-tone jamming). To analyze the BER performance of the hybrid systems with or without the Rake receiver, signal-to-noise plus interference ratio is derived as a function of the average signal-to-noise ratio, the jammer-to-signal ratio and other system parameters. Numerical results show that the performance difference between the two modulation schemes, MSK and QPSK, is negligible for low JSR, while it becomes significant with the increase of JSR. In multi-path Rayleigh fading channel without Rake receiver, the performances of the two modulation schemes are slightly improved as the DS spreading gain is increased when the total SS bandwidth is fixed. In particular, there is an optimum DS spreading gain for large JSR, in which a minimum BER is achieved, while only DS spreading gives the best performance for small JSR. For hybrid systems with Rake receiver, it is shown that the hybrid system of the MSK modulation scheme provides better anti-jamming performance and larger performance improvement with the increase of multi-path resolution capability of Rake receiver than that of QPSK modulation for all conditions.

Digital predistorters for communication systems with dynamic spectrum allocation (가변 스펙트럼 할당을 지원하는 광대역 전력 증폭기를 위한 디지털 전치왜곡기)

  • Choi, Sung-Ho;Seo, Sung-Won;Mah, Bak-Il;Jeong, Eui-Rim
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.2
    • /
    • pp.307-314
    • /
    • 2011
  • A new predistortion technique for dynamic spectrum allocation systems such as cognitive radio (CR) is proposed. The system model considered in this paper occupies a small band at a time, but the center frequency can be changed in the wide range of frequency. In this scenario. the front-end filter may not eliminate the harmonics of the power amplifier (PA) output. The proposed PD reduces the spectral regrowth of the fundamental signal at the carrier frequency (${\omega}_0$) and removes the harmonics ($2{\omega}_0$, $3{\omega}_0$, ...) at the same time. The proposed PD structure is composed of multiple predistorters (PDs) centered at integer multiples of ${\omega}_0$. The PD at ${\omega}_0$ is for removing spectral regrowth of the fundamental signal, and the others are for harmonic reduction. In the proposed PD structure, parameters of PDs are found jointly. Simulation results show that the spectral regrowth can be reduced by 20dB, and the 2nd and 3rd harmonics can be reduced down to -70dB from the power of the fundamental signal.

Sensitivity Analysis of Oscillation Modes Occurred by Periodic Switching Operations of TCSC in Discrete Power Systems (이산 전력시스템에서 TCSC의 주기적 스위칭 동작에 의한 진동모드의 감도해석)

  • Kim, Deok-Young
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.2
    • /
    • pp.162-168
    • /
    • 2008
  • In this paper, the RCF(Resistive Companion Form) analysis method is applied to analyze small signal stability of power systems including thyristor controlled FACTS(Flexible AC Transmission System) equipments such as TCSC(Thyristor Controlled Series Capacitor). The eigenvalue sensitivity analysis algorithm in discrete systems based on the RCF analysis method is presented and applied to the power system including TCSC. As a result of simulation, the RCF analysis method is very useful to precisely calculate the variations of eigenvalues or newly generated unstable oscillation modes after periodic switching operations of TCSC. Also the eigenvalue sensitivity analysis method based on the RCF analysis method enabled to precisely calculate eigenvalue sensitivity coefficients of controller parameters about the dominant oscillation mode after periodic switching operations in discrete systems. These simulation results are different from those of the conventional continuous system analysis method such as the state space equation and showed that the RCF analysis method is very useful to analyze the discrete power systems including periodically operated switching equipments such as TCSC.

Analysis of $f_T$ and $f_{max}$ Dependence on Unit Gate Finger Width for RF Performance Optimization of MOSFETs (MOSFET의 RF 성능 최적화를 위한 단위 게이트 Finger 폭에 대한 $f_T$$f_{max}$의 종속데이터 분석)

  • Cha, Ji-Yong;Cha, Jun-Young;Jung, Dae-Hyoun;Lee, Seong-Hearn
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.9
    • /
    • pp.21-25
    • /
    • 2008
  • In this study, to maximize RF performance of MOSFETs, $f_T$ and $f_{max}$ dependent data on $W_u$ are measured and newly analyzed by extracting small-signal model parameters. From the physical analysis results, it is found that a peak value of $f_T$ is generated by $W_u$-independent parasitic gate-bulk capacitance at narrow $W_u$ and the wide width effect of reducing the increasing rate of transconductance at wide $W_u$. In addition, it is revealed that a maximum value of $f_{max}$ is caused by the non-quasi-static effect that the gate resistance is greatly reduced at narrow $W_u$ and becomes constant at wide $W_u$.