• Title/Summary/Keyword: Small watershed

Search Result 479, Processing Time 0.02 seconds

Flood Runoff Analysis for Agricultural Small Watershed Using HEC-HMS Model and HEC-GeoHMS Module (HEC-HMS 모형과 HEC-GeoHMS 모듈을 이용한 농업소유역의 홍수유출 해석)

  • 김상민;성충현;박승우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.6
    • /
    • pp.119-127
    • /
    • 2003
  • This paper documents recent efforts to validate the GIS-based hydrologic models, HEC-HMS and HEC-GeoHMS by the US Army Corps of Engineers. HMS and Geo-HMS were used to simulate storm runoff from a small rural watershed, the Balan HS#6. The watershed is 3.85 $\textrm{km}^2$ in size. The watershed topographic, soils, and land use data were processed using the GIS tool fur the models. Input parameters were retrieved and calibrated with the field data. The simulated peak runoff, time to peak, and total direct runoff fer twenty three storms were compared with the observed data. The results showed that the coefficient of determination($R^2$) for the observed peak runoff was 0.95 and an error, RMSE, 3.08 $\textrm{m}^3$/s for calibration stages. In the model verifications, $R^2$ was 0.89 and RMSE 6.79 $\textrm{m}^3$/s, which were slightly less accurate than the calibrated data. The simulated flood hydrographs were well compared to the observed. It was concluded that HMS and GeoHMS are applicable to flood analyses for rural watersheds.

Watershed Scale Management Techniques of the Pollutants from Small Scale Livestock Ranches - Buffer Zone Selection for Natural Purification - (농촌 소유역 축산폐수의 유역관리기법 개발 - 자연정화처리를 위한 완충대 적지분석 -)

  • Kim, Seong-Joon;Lee, Nam-Ho;Yoon, Kwang-Sik;Hong, Seong-Gu;Lee, Yun-Ah
    • Journal of Korean Society of Rural Planning
    • /
    • v.6 no.2 s.12
    • /
    • pp.43-49
    • /
    • 2000
  • Buffer zone selection technique for natural purification of livestock wastewater within a small agricultural watershed was developed using Geographic Information Systems. The technique was applied to $4.12\;km^2$ watershed located in Gosan-myun, Ansung-gun which have 20 livestock farmhouses. As a necessary data for selecting process, feedlot site map, digital Elevation Model (DEM), stream network, soil and land use map were prepared. By using these data, wastewater moving-path tracing program from each feedlot to the stream was developed to get the basic topographic factors; average slope through the paths, distance to the nearest stream and watershed outlet. To identify the vulnerable feedlots for storm event, the grid-based storm runoff model (Kim, 1998; Kim et al., 1998) was adopted. The result helps to narrow down the suitable area of buffer zone, and finally by using subjective but persuasive conditions related to elevation, slope and land use, the suitable buffer zones were selected.

  • PDF

Estimation of Streamflow Discharges using Kajiyama Equation and SWAT Model (가지야마공식과 SWAT 모형을 이용한 유출량 산정)

  • Shin, Yong-Chul;Shin, Min-Hwan;Kim, Woong-Ki;Lim, Kyoung-Jae;Choi, Joong-Dae
    • KCID journal
    • /
    • v.14 no.1
    • /
    • pp.41-49
    • /
    • 2007
  • In this study, Kajiyama equation and SWAT model were used to estimate the available water resources from 1967 to 2003 at the small scale watershed, located in Dongnae-Myeon, Chunchen, Gangwon. The annual average streamflow for dry years estimated using the Kajiyama equation and the SWAT model were $2,593,779m^3$ and $2,579,162m^3$. The annual average streamflow for wet years were $7,223,804m^3$ and $7,035,253m^3$, respectively. The annual arrange streamflow for the entire 36 year period were $14,868,601m^3$ and $14,214,292m^3$, respectively. The coefficient of determination ($R^2$) and the Nash-Sutcliffe coefficient for comparison between Kajiyama and SWAT were 0.90 and 0.79, respectively. The comparison indicates that the Kajiyama equation and the SWAT model can be used to estimate the streamflow at th study watershed with reasonable accuracy, although the estimated values were not compared with measured streamflow data, which is not available at the small scale study watershed. However, the Kajiyama equation is recommended for estimating available water resources at Dongnae-Myeon watershed because of its ease-of-use and reasonable accuracy compared with the SWAT model, requiring numerous model input and expensive GIS software in operating the model

  • PDF

Facial Region Segmentation using Watershed Algorithm based on Depth Information (깊이정보 기반 Watershed 알고리즘을 이용한 얼굴영역 분할)

  • Kim, Jang-Won
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.4 no.4
    • /
    • pp.225-230
    • /
    • 2011
  • In this paper, we propose the segmentation method for detecting the facial region by using watershed based on depth information and merge algorithm. The method consists of three steps: watershed segmentation, seed region detection, and merge. The input color image is segmented into the small uniform regions by watershed. The facial region can be detected by merging the uniform regions with chromaticity and edge constraints. The problem in the existing method using only chromaticity or edge can solved by the proposed method. The computer simulation is performed to evaluate the performance of the proposed method. The simulation results shows that the proposed method is superior to segmentation facial region.

A Comparative Study of Unit Hydrograph Models for Flood Runoff Simulation at a Small Watershed (농업소유역의 홍수유출량 추정을 위한 단위도 모형 비교연구)

  • Seong, Choung-Hyun;Kim, Sang-Min;Park, Seung-Woo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.50 no.3
    • /
    • pp.17-27
    • /
    • 2008
  • In this study, three different unit hydrograph methods (Snyder, SCS, Clark) in the HEC-HMS were compared to find better fit with the observed data in the small agricultural watershed. Baran watershed, having $3.85km^2$ in size, was selected as a study watershed. The watershed input data for HEC-HMS were retrieved using HEC-GeoHMS which was developed to assist making GIS input data for HEC-HMS. Rainfall and water flow data were monitored since 1996 for the study watershed. Fifty five storms from 1996 to 2003 were selected for model calibration and verification. Three unit hydrograph methods were compared with the observed data in terms of simulated peak runoff, peak time and total direct runoff for the selected storms. The results showed that the coefficient of determination ($R^2$) for the observed peak runoff was $0.8666{\sim}0.8736$ and root mean square error, RMSE, was $5.25{\sim}6.37\;m^3/s$ for calibration stages. In the model verification, $R^2$ for the observed peak runoff was $0.8588{\sim}0.8638$ and RMSE was $9.57{\sim}11.80\;m^3/s$, which were slightly less accurate than the calibrated data. The simulated flood hydrographs were well agreed with the observed data. SCS unit hydrograph method showed best fit, but there was no significant difference among the three unit hydrograph methods.

A study on the rainfall runoff from paddy fields in the small watershed during Irrigation period (관개기관중 답유역에서의 강우유출량 추정에 관한 연구)

  • 김채수
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.24 no.4
    • /
    • pp.99-108
    • /
    • 1982
  • This thesis aims to estimate the rainfall runoff from paddy field in a small watershed during irrigation period. When the data observed at the proposed site are not available, the Monthly Runoff Equation of Korean Rivers which was derived from data observed under the following assumptions is used to study the water balance. a. Monthly base flow was assumed as 10. 2mm even if these is no mouthly rainmfall. b. Monthly comsumption of rainfall was ranged from 100 to 2OOmm without relation to the rainfall depth. However, the small watershed which consists mainly of paddy fields encounters severe droughts and accordingly the baseflow is negligible. Under the circumstances the author has developed the following equation called "Flood Irrigation Method for Rainfall Runoff "taking account of the evapotranspiration, precipitation, seepage, less of transportation, etc. R= __ A 7000(1 +F) -5n(n+1)+ (n+1)(Pr-S-Et)] where: R: runoff (ha-m) A: catchment area (ha) F: coefficient of loss (o.o-0. 20) Pr: rainfall (mm) S: seepage Er: evapotranspiration (mm) To verify the above equation, the annual runoff ratio for 28 years was estimated using the Monthly Runoff Equation of Korean Rivers the Flood Irrigation Method and the Complex Hydrograph Method based on meteorological data observed in the Dae Eyeog project area, and comparison was made with data observed in the Han River basin. Consequently, the auther has concluded that the Flood Irrigation Method is more consi- stent with the Complex Hydrograph Method and data observed than the Monthly Runoff Equation of Korean Rivers.

  • PDF

A Study on the Farmstead Management in Small Agricultural Watershed using AGNPS model (농촌 비점원 오염 모형을 이용한 농촌 소유역 축산농가 관리기법에 관한 연구(지역환경 \circled1))

  • 이윤아;김성준;장석길
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.536-542
    • /
    • 2000
  • The purpose of this study is to evaluate the effect of stream quality by the farmer's livestock wastes management in a typical small agricultural watershed. AGNPS model has the capability to adjust the level of pollutant load from farmstead and the fertilization level of upland field. A small agricultural watershed(4.12 $\textrm{km}^2$) which has as livestock farmhouses located in Gosan-myun, Ansung-gun was selected. AGNPS data were prepared by using Arc/info and Idrisi. 4 storm events in 1999 was used for runoff calibration, and 2 storm event which is measured in hourly-base at 4 locations along the stream were used for water quality(TN, TP) calibration. Model's behavior to stream quality for 3 cases was investigated. First, the variation of pollution produced from the cattle shed affected little to the stream quality because the cattle sheds were roofed. Second, the good management of ground in farmstead affected to stream quality with 11% and 17% decrease in TN and TP, respectively. Third, the reduction of fertilization level to upland field affected to stream quality with 27.2% and 38.5% decrease in TN and TP, respectively.

  • PDF

Development of Storage Management System for Small Dams (소규모 댐의 저수관리 시스템 개발)

  • Kim, Phil-Shik;Kim, Sun-Joo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.3
    • /
    • pp.15-25
    • /
    • 2005
  • Ninety tow percent of over 1,800 gate controlled dams in Korea are classified as small dams. The primary purpose of these small dams is to supply irrigation water. Therefore, while large dams can store as much as 80 percent of precipitation and thus are efficient to control flood, small dams are often lack of flood control function resulting in increased susceptibility drought and flood events. The purpose of this study is to develope a storage management model for irrigation dams occupying the largest portion of small dams. The proposed Storage Management Model (STMM) can be applied to the Seongju dam for efficient management. Besides, the operation standard is capable of analyzing additional available water, considering water demand and supply conditions of watershed realistically. And the model can improve the flood control capacity and water utilization efficiency by the flexible operation of storage space. Consequently, if the small dams are managed by the proposed Storage management model, it is possible to maximize water resources securance and minimize drought and flood damages.

Analysis of Runoff Characteristics for a Small Forested Watershed Using HYCYMODEL - At a watershed in Mt. Palgong - (물순환(循環)모델에 의한 산지소유역(山地小流域)의 유출특성(流出特性) 분석(分析) - 팔공산유역(八空山流域)을 대상(對象)으로 -)

  • Park, Jae Chul;Lee, Heon Ho
    • Journal of Korean Society of Forest Science
    • /
    • v.89 no.5
    • /
    • pp.564-575
    • /
    • 2000
  • This study was carried out to reveal characteristics of long-term runoff by using HYCYMODEL in a small forested watershed. From May to September in 1998 and in 1999, the fitness of HYCYMODEL and runoff characteristics were estimated by HYCYMODEL using rainfall and discharge at the experimental watershed. The function of stage and discharge in the experimental watershed was determined as following equation $Q=11.148H^{2.5867}$($R^2=0.9956$). From May to September in 1998 and in 1999, the runoff rates were 57.7% in 1998 and 87.1% in 1999 at the experimental watershed. The discharge was assumed to be increased because of rainfall intensity difference and thinning. By applicability test, the HYCYMODEL showed good estimation of runoff by optimized fifteen parameters. Comparing runoff characteristics before and after thinning by calculating through HYCYMODEL, direct runoff and base runoff increased 4%, 7%, respectively as evapotranspiration decreased 11%. Parameters $D_{50}$ and $K_h$, which were related to the direct run, and a parameter $K_u$, which was related to the baseflow, were assumed to indicate that forest was changed by the effect of thinning and weathering process of bed rock.

  • PDF

Application Analysis of HSPF Model Considering Watershed Scale in Hwang River Basin (황강유역에서의 유역규모를 고려한 HSPF 모형의 적용성 평가)

  • Choi, Hyun Gu;Han, Kun Yeun;Hwangbo, Hyun;Cho, Wan Hee
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.4
    • /
    • pp.509-521
    • /
    • 2011
  • The purpose of this study is to estimate overall reliability and applicability of the watershed modeling for systematic management of point and non-point sources via water quality analysis and prediction of runoff discharge within watershed. Recently, runoff characteristics and pollutant characteristics have been changing in watershed by anomaly climate and urbanization. In this study, the effects of watershed scale were analyzed in runoff and water quality modeling using HSPF. In case of correlation coefficient, its range was from 0.936 to 0.984 in case A(divided - 2 small watersheds). On the other hand, its range was form 0.840 to 0.899 in case B(united - 1 watershed). In case of Nash-Sutcliffe coefficient, its range was from 0.718 to 0.966 in case A. On the other hand, its range was from 0.441 to 0.683 in case B. As a result, it was judged that case A was more accurate than case B. Therefore, runoff and water quality modeling in minimum watershed scale that was provided data for calibration and verification was judged to be favorable in accuracy. If optimal watershed dividing and parameter optimization using PEST in HSPF with more reliable measured data are carried out, more accurate runoff and water quality modeling will be performed.