• Title/Summary/Keyword: Small scale river

Search Result 119, Processing Time 0.023 seconds

Prey Preference of Juvenile Fish Based on the Laboratory Experiments and its Impact on Zooplankton Community of the Nakdong River (치어의 먹이선호도 및 포식이 낙동강 동물플랑크톤군집에 미치는 영향.)

  • Chang, Kwang-Hyeon;Kim, Hyun-Woo;La, Geung-Hwan;Jeong, Kwang-Seuk;Joo, Gea-Jae
    • Korean Journal of Ecology and Environment
    • /
    • v.37 no.1 s.106
    • /
    • pp.130-136
    • /
    • 2004
  • In the present study, prey preference of juvenile fishes was examined using an experimental approach. Zooplankton composition, as a prey of the fish, was evaluated by taking into account the species as well as body size of juveniles in the aquarium. The predation of juvenile fishes is known to be an important factor in changes of zooplankton communities. In some previous studies at the regulated Nakdong River, the collapse of large cladcoerans and an increase in the rotifer population by selective predation during spring and summer were observed. This study focused on the predation of juvenile fishes such as Hyporhamphus sajori, Rhinogobius brunneus, and Opsariichtys uncirostris amurensis on zooplankton community structure in mesocosm scale experiments. These fishes selected the cladoceran Moina micrura with highest individual preference value (Manly/Chesson index)among zooplankton prey in the experimental aquarium. When the size-selective prey preferences of the juvenile fish were compared, both small (body size <2 cm) and large (body size >2cm) juveniles of O. uncirostris positively selected M. micrura. In the outdoor experimental tanks, juvenile fishes consumed the cladoceran M. micrura, resulting in an high abundance of the rotifer, Polyarthra spp. The results suggest that juvenile fish predation may play an important role in regulating the zooplankton community structure by reducing the cladoceran density and increase of rotifers in the Nakdong River during spring and summer.

Estimating Critical Stream Power by the Distribution of Gravel-bed Materials in the Meandering River (만곡하천의 자갈하상재료 분포에 따른 한계수류력 평가)

  • Shin, Seung-Sook;Park, Sang-Deok;Lee, Seung-Kyu;Ji, Min-Gyu
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.2
    • /
    • pp.151-163
    • /
    • 2012
  • The distribution of gravel-bed materials in mountainous river is formed by the process of deposition and transportation of sediment responding to stream power of the latest flood that is over the certain scale. The particle size of bed material was surveyed in the longitudinal points of river and detail points of a specific meandering section and used to estimate the critical velocity and stream power. Yang's critical unit stream power and Bagnold's critical stream power for gravel-bed materials increased with the distance from downstream to upstream. Dimensionless shear stress based on the designed flood discharge in Shields diagram was evaluated that the gravel-bed materials in most survey points may be transported as form of bedload. The mean diameter in the meandering section was the biggest size in first water impingement point of inflow water from upstream and the second big size in second water impingement point by reflection flow. The mean diameters were relatively the small sizes in points right after water impingement. The range of mean critical velocity was 0.77~2.60 m/s and critical unit stream power was big greatly in first water impingement point. The distribution of critical stream power, range of 7~171 $W/m^2$, was shown that variation in longitudinal section was more obvious than that of cross section and estimated that critical stream power may be affected greatly in first and second water impingement point.

Transportation and Deposition of Modern Sediments in the Southern Yellow Sea

  • Shi, Xuefa;Chen, Zhihua;Cheng, Zhenbo;Cai, Deling;Bu, Wenrui;Wang, Kunshan;Wei, Jianwei;Yi, Hi-Il
    • Journal of the korean society of oceanography
    • /
    • v.39 no.1
    • /
    • pp.57-71
    • /
    • 2004
  • Based on the data obtained under the China-Korea joint project (1997-2001) and historic observations, the distribution, transportation and sedimentation of sediment in the southern Yellow Sea (SYS) are discussed, and the controversial formation mechanism of muddy sediments is also explored. The sediment transport trend analysis indicates that the net transport direction of sediment in the central SYS (a fine-grained sediment deposited area) points to $123.4^{\circ}E,\;35.1^{\circ}N$, which is a possible sedimentation center in the central SYS. The sediment transport pattern is verified by the distribution of total suspended matter (TSM) concentration and ${\delta}^{13}C$ values of particulate organic carbon (POC), the latter indicates that the bottom water plays a more important role than the surface water in transporting the terrigenous material to the central deep-water area of the SYS, and the Yellow Sea circulation is an important control factor for the sediment transport pattern in the SYS. The carbon isotope signals of organic matter in sediments indicate that the Shandong subaqueous delta has high sedimentation rate and the deposited sediments originate mainly from the modern Yellow River. The terrigenous sediments in deep-water area of the SYS originate mainly from the old Yellow River and the modern Yellow River, and only a small portion originates from the modern Yangtze River. The analytical results of TSM and stable carbon isotopes are further confirmed by another independent tracer of sediment source, polycyclic aromatic hydrocarbons (PAHs). Five light mineral provinces in the SYS can be identified and they indicate inhomogeneity in sources and sedimentary environment. The modern shelf sedimentary processes in the SYS are controlled by shelf dynamic factors. The muddy depositional systems are produced in the shelf low-energy environments, which are controlled by some meso-scale cyclonic eddies (cold eddies) in the central SYS and the area southwest of the Cheju Island. On the contrary, an anticyclonic muddy depositional system (warm eddy sediment) appears in the southeast of the SYS (the area northwest of the Cheju Island). In this study, we give the cyclonic and anticyclonic eddy sedimentation patterns.

Application of Flood Discharge for Gumgang Watershed Using GIS-based K-DRUM (GIS기반 K-DRUM을 이용한 금강권 대유역 홍수유출 적용)

  • Park, Jin-Hyeog;Hur, Young-Teck
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.18 no.1
    • /
    • pp.11-20
    • /
    • 2010
  • The distributed rainfall-runoff model which is developed in the country requires a lot of time and effort to generate input data. Also, it takes a lot of time to calculate discharge by numerical analysis based on kinematic wave theory in runoff process. Therefore, most river basins using the distributed model are of limited scale, such as small river basins. However, recently, the necessity of integrated watershed management has been increasing due to change of watershed management concept and discharge calculation of whole river basin, including upstream and downstream of dam. Thus, in this study, the feasibility of the GIS based physical distributed rainfall-runoff model, K-DRUM(K-water hydrologic & hydraulic Distributed RUnoff Model) which has been developed by own technology was reviewed in the flood discharge process for the Geum River basin, including Yongdam and Daecheong Dam Watersheds. GIS hydrological parameters were extracted from basic GIS data such as DEM, land cover and soil map, and used as input data of the model. Problems in running time and inaccuracy setting using the existing trial and error method were solved by applying an auto calibration method in setting initial soil moisture conditions. The accuracy of discharge analysis for application of the method was evaluated using VER, QER and Total Error in case of the typhoon 'Ewiniar' event. and the calculation results shows a good agreement with observed data.

Estimation of Production Unit Loads of Livestock Manure Based on TOC (TOC 기반 가축분뇨 발생 원단위 산정)

  • Lee, Yunhee;Kim, Yongseok;Park, Jihyung;Oa, Seong-Wook
    • Journal of Wetlands Research
    • /
    • v.16 no.3
    • /
    • pp.403-409
    • /
    • 2014
  • Assessment of pollutant loads for livestock manure based on total organic carbon (TOC) is being required to apply TOC as an indicator in management of total maximum daily loads. In this study, TOC based unit loads of pig manure known as highly contributing to water pollution assessed. The concentration of pig manure, amount of manure production including cleaning water, and unit loads were investigated targeting 52 farms according to 4 major river basins, rearing form, farm scale, and piggery form. The manure production was highly generated in scraper type of piggery, in small scaled farm rearing sow, and in Han River basin and Nakdong River basin. The averaged manure production was 7.4 L/head/d in total river basins. Averaged concentrations were investigated as TOC 16,037 mg/L, BOD 10,559 mg/L, TN 4,145 mg/L, and TP 503 mg/L. Corresponding unit loads were assessed as TOC 117.1 g/head/d, BOD 77.1 g/head/d, TN 34.7 g/head/d, and TP 3.67 g/head/d.

Research on Ship to Ship Channel Characteristics Based on Effect of Antenna Location in Inland Waterway at 5.9 GHz

  • Zhang, Jing;Li, Changzhen;Du, Luyao;Chen, Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.8
    • /
    • pp.3350-3365
    • /
    • 2020
  • A considerable literature has recently grown up on the theme of ship wireless communications. However, much of the research up to now has been descriptive in the offshore area. There has been little quantitative analysis of wireless communication in inland waterways, which has received considerable attention lately. Until now, only the effects on inland river environment are examined. What is less clear is the nature of channel change caused by the antenna movement. Here we explore the moving ship-to-fixed-ship fading characteristics at 5.9 GHz for an inland waterway in the city center of China. The ship motion trajectory is designed in order to determine the effect of changes in the antenna position. We evaluate the channel fading characteristics of inland waterway, which are highly correlated with the distance between transmitter and receiver. We demonstrate that the line-of-sight component, as well as the components from multipath with obstruction reflections, contributes largely to the mean power gap. Our findings reveal critical ship-to-ship characteristics in inland waterway, which definitely contribute to the field of ship wireless communications.

WSN-based Coastal Environment Monitoring System Using Flooding Routing Protocol (플러딩 라우팅 프로토콜을 이용한 WSN 기반의 연안 환경 모니터링 시스템)

  • Yoo, Jae-Ho;Lee, Chang-Hee;Ock, Young-Seok;Chung, Wan-Young
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.46-52
    • /
    • 2012
  • The rapid water pollution in stream, river, lake and sea in recent years raises an urgent need for continuous monitoring and policymaking to conserve the global clean environment. In particular, the increasing water pollution in coastal marine areas adds to the importance of the environmental monitoring systems. In this paper, the mobile server is designed to gathers information of the water quality at coastal areas. The obtained data by the server is transmitted from field servers to the base station via multi-hop communication in wireless sensor network. The information collected includes dissolved oxygen(DO), hydrogen ion exponent(pH), temperature, etc. By the information provided the real-time monitoring of water quality at the coastal marine area. In addition, wireless sensor network-based flooding routing protocol was designed and used to transfer the measured water quality information efficiently. Telosb sensor node is programmed using nesC language in TinyOS platform for small scale wireless sensor network monitoring from a remote server.

Analysis of Temporal and Spatial Variations of Channel-Aquifer Interaction Using a Distributed Catchment Model: A Case Study for the Tarland Burn Catchment in the UK (분포형 유역 모델을 이용한 하천-지하수 상호작용의 시공간적 변동 해석: 영국 Tarland Burn 유역에 대한 사례 연구)

  • Koo, Bhon-Kyoung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.253-257
    • /
    • 2007
  • Channel-aquifer interaction is one of the key hydrological processes that determine water flows in the stream/river channel. Field measurements of channel-aquifer interaction, however, is very difficult and costly, particularly when one intends to understand its variations across a catchment for a long period. Hydrological simulations using a catchment model are a relatively easier and cheaper alternative provided the model structure is appropriate for describing channel-aquifer interaction. In this study, a catchment model called CAMEL (Chemicals from Agricultural Management and Erosion Losses) is used for estimating channel-aquifer interaction over time and space. CAMEL is a distributed catchment model to simulate transformation and transport processes of sediment and pollutants as well as water flows at the catchment scale. In the model, a catchment is represented using a network of square columns each of which is comprised of various storages of water. CAMEL explicitly simulates both surface and subsurface processes including channel-aquifer interaction. This paper presents an application study results of CAMEL for the Tarland Burn Catchment, a small (catchment area $52\;km^2$) rural catchment in Scotland, UK, demonstrating some of the channel-aquifer interaction dynamics across the catchment during a 2-year period.

  • PDF

Distribution and Behavior of Mixed Contaminants, Explosives and Heavy Metals, at a Small Scale Military Shooting Range (국내 소규모 군사격장 복합오염물질(화약물질 및 중금속)의 분포 및 거동)

  • Park, Seokhyo;Bae, Bumhan;Kim, Minkyung;Chang, Yoonyoung
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.5
    • /
    • pp.523-532
    • /
    • 2008
  • A phase II site investigation and feasibility study was conducted at a military mortar shooting range near the demilitarized zone (Kyunggi, South Korea) to assess the extent of contaminants migration to the nearby Imjin river in which a flood control dam is under construction. The results showed that silty-clay soils around target areas were co-contaminated with heavy metals (Cd, Cu, and Pb) and explosives (HMX, RDX, and TNT). The total amount of contaminant was estimated to be 497.1 kg-RDX, 20.6 kg-HMX, 1.4 kg-TNT, 35.2 kg-Cd, 4,331 kg-Cu, and 5,115 kg-Pb, respectively. Both heavy metals and explosives were almost equally distributed on each soil particle size fraction. Neither subsurface soil samples nor ground water samples showed signs of contamination above the environmental criteria. The major migration route of contaminants was soil particles in surface run-off during rain at which a mass discharge rate of 30.0 mg-RDX/hour was observed.

A Study on the Effect of Flow Properties in Shale Gas Reservoirs (셰일가스 저류층에서의 동적물성 영향 분석)

  • Kim, Jung-Gyun;Kang, Il-Oh;Shin, Chang-Hoon;Lee, Seong-Min;Lee, Jeong-Hwan
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.2
    • /
    • pp.50-57
    • /
    • 2017
  • Shale gas reservoir are composed of very fine grained particles, and their pores are very small, at the scale of nanometers. In this study, a parametric study was implemented to investigate the effect of knudsen diffusion, relative permeability and permeability reduction in shale gas reservoir. Shale gas reservoir model in Horn-River was developed to confirm the productivity for different design parameters such as diffusion, relative permeability, connate water saturation, and permeability reduction.