DOI QR코드

DOI QR Code

A Study on the Effect of Flow Properties in Shale Gas Reservoirs

셰일가스 저류층에서의 동적물성 영향 분석

  • 김정균 (한국가스공사 가스연구원) ;
  • 강일오 (한국가스공사 가스연구원) ;
  • 신창훈 (한국가스공사 가스연구원) ;
  • 이성민 (한국가스공사 가스연구원) ;
  • 이정환 (전남대학교 에너지자원공학과)
  • Received : 2016.10.27
  • Accepted : 2017.04.27
  • Published : 2017.04.30

Abstract

Shale gas reservoir are composed of very fine grained particles, and their pores are very small, at the scale of nanometers. In this study, a parametric study was implemented to investigate the effect of knudsen diffusion, relative permeability and permeability reduction in shale gas reservoir. Shale gas reservoir model in Horn-River was developed to confirm the productivity for different design parameters such as diffusion, relative permeability, connate water saturation, and permeability reduction.

셰일 저류층은 매우 미세한 입자로 구성되어 있으며, 공극의 크기가 나노미터에 불과하다. 본 연구에서는 셰일 암체에서의 크누센 확산영향, 균열대 및 암체에서 상대투과도, 셰일가스 생산에 따른 균열투과도 변화를 적용하여 그 영향을 분석하였다. 이를 위해 캐나다 혼리버 셰일 저류층 모델을 구축하였으며, 장기간 생산을 하는 셰일 저류층에서의 확산 및 선행연구에서 제안된 균열대 상대투과도를 적용하여 생산성에 미치는 영향을 분석하였다. 그리고 암체와 균열대에서 동생수가 생산성에 미치는 영향과 저류층 생산에 따른 균열투과도 변화를 적용하여 생산성을 평가하였다.

Keywords

References

  1. Civan, F., Rai, C.S., and Sondergeld, C.H., "Shale Gas Permeability and Diffusivity Inferred by Improved Formulation of Relevant and Transport Mechanics", Trans. Porous Med, 86(3), 925-944, (2011) https://doi.org/10.1007/s11242-010-9665-x
  2. Romm, E.S., Fluid Flow in Fractures, Nedra Publishing House, Moscow, (1966)
  3. Chima, A., and Geiger, S., "An Analytical Equation to Predict Gas-Water Relative Permeability Curves in Fractures", SPE Latin American and Caribbean Petroleum Engineering Conference, Mexico City, Mexico, 1-11, (2012)
  4. Lei, G., Dong, P.C., Yang, S., Li, Y.S., Mo, S.Y., Gai, S.H., and Wu, Z.S., "A New Analytical Equation to predict Gas-Water Two-Phase Relative Permebility Curves in Fractures", International Petroleum Technology Conference, Kuala Lumpur, Malaysia, 1-13, (2014)
  5. Petrel Robertson Consulting Ltd., Horn River Basin Subsurface Aquifer Project-Phase 1 Data, Geoscience BC Report, (2010)
  6. Javadpour, F., "Nanopores and Apparent Permeability of Gas Flow in Mudrocks(Shales and Siltstone)", Journal of Canadian Petroleum Technology, 48(9), 16-21, (2009)
  7. Kim, C.J., Jang, H.C., Lee, Y.S., and Lee, J.H., Diffusion Characteristics of Nanoscale Gas Flow in Shale Matrix from Haenam Basin, Korea", Environmental Earth Sciences, 75(4), 1-8, (2016) https://doi.org/10.1007/s12665-015-4873-x
  8. Kang, I.O., Kim, K.H., Shin, C.H., Kim, J.G., and Lee, J.Y., "A Study on Fracture Permeability Variation in Relation to Proppant Type", Fall Joint Conference of KSMER, KSRM and KSEG, Jeju, Korea, 182, (2015)
  9. Ali, T.A., and Sheng, J.J., "Evaluation of the Effect of Stress-dependent Permeability on Production Performance in Shale Gas Reservoirs", SPE Eastern Regional Metting, Morgantown, USA, 1-14, (2015)
  10. Brooks, R.H., and Corey, A.T., "Hydraulic Properties of Porous Media", Hydrology Paper, 3, 27, Colorado State University, Fort Collins, Colorado, (1964)