• Title/Summary/Keyword: Small robot

Search Result 492, Processing Time 0.028 seconds

A Robot System Maintained with Renewable Energy

  • Kim, Jaehyun;Moon, Chanwoo
    • International journal of advanced smart convergence
    • /
    • v.8 no.1
    • /
    • pp.98-105
    • /
    • 2019
  • Energy autonomy is a system that is sustained by energy from an independent and distributed source such as renewable energy. In this paper, we propose a robotic energy autonomy in which a robot obtains energy from a renewable energy source with a limited storage capacity. As an energy transfer method, wireless power transfer is used to solve the problem of the conventional contact charging method, mechanical complexity, and to obtain high energy transfer efficiency, the image information is used to align the transmitting and receiving coils accurately. A small scale thermoelectric energy source with boost converter, battery charger, and wireless power transfer coil is constructed and an actual charging experiment is conducted to verify the proposed autonomy system.

Perspectives on the Use of Robots in Etho-experimental Approaches to Animal Behavior (심리학 및 행동생물학적 연구에서 동물 로봇의 활용과 전망)

  • Choi, June-Seek
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.1
    • /
    • pp.86-92
    • /
    • 2022
  • Utilization of small robots in psychology and biology provides a new breakthrough in understanding the neurobiological mechanisms of various animal behavior. The expansion of robot use in animal research is partly due to increased availability of economically plausible mobile robots and also due to the current shift in animal research toward more ecologically valid experiments. Ground-breaking experimental findings are expected when the behavioral variables are manipulated in more natural situations. In addition, the results from laboratory could be generalized more easily with added ecological validity. The current paper attempts to review a wide range of applications of animal robots used to study animal behavior and to highlight major advantages and limitations. In particular, this review focuses more on the psychological impact of animal robots than engineering details about their structure and operation. Finally, this review will provide some practical considerations when employing robots in animal experiments.

Indirect Kalman Filter based Sensor Fusion for Error Compensation of Low-Cost Inertial Sensors and Its Application to Attitude and Position Determination of Small Flying robot (저가 관성센서의 오차보상을 위한 간접형 칼만필터 기반 센서융합과 소형 비행로봇의 자세 및 위치결정)

  • Park, Mun-Soo;Hong, Suk-Kyo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.7
    • /
    • pp.637-648
    • /
    • 2007
  • This paper presents a sensor fusion method based on indirect Kalman filter(IKF) for error compensation of low-cost inertial sensors and its application to the determination of attitude and position of small flying robots. First, the analysis of the measurement error characteristics to zero input is performed, focusing on the bias due to the temperature variation, to derive a simple nonlinear bias model of low-cost inertial sensors. Moreover, from the experimental results that the coefficients of this bias model possess non-deterministic (stochastic) uncertainties, the bias of low-cost inertial sensors is characterized as consisting of both deterministic and stochastic bias terms. Then, IKF is derived to improve long term stability dominated by the stochastic bias error, fusing low-cost inertial sensor measurements compensated by the deterministic bias model with non-inertial sensor measurement. In addition, in case of using intermittent non-inertial sensor measurements due to the unreliable data link, the upper and lower bounds of the state estimation error covariance matrix of discrete-time IKF are analyzed by solving stochastic algebraic Riccati equation and it is shown that they are dependant on the throughput of the data link and sampling period. To evaluate the performance of proposed method, experimental results of IKF for the attitude determination of a small flying robot are presented in comparison with that of extended Kaman filter which compensates only deterministic bias error model.

Human Gait-Phase Classification to Control a Lower Extremity Exoskeleton Robot (하지근력증강로봇 제어를 위한 착용자의 보행단계구분)

  • Kim, Hee-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39B no.7
    • /
    • pp.479-490
    • /
    • 2014
  • A lower extremity exoskeleton is a robot device that attaches to the lower limbs of the human body to augment or assist with the walking ability of the wearer. In order to improve the wearer's walking ability, the robot senses the wearer's walking locomotion and classifies it into a gait-phase state, after which it drives the appropriate robot motions for each state using its actuators. This paper presents a method by which the robot senses the wearer's locomotion along with a novel classification algorithm which classifies the sensed data as a gait-phase state. The robot determines its control mode using this gait-phase information. If erroneous information is delivered, the robot will fail to improve the walking ability or will bring some discomfort to the wearer. Therefore, it is necessary for the algorithm constantly to classify the correct gait-phase information. However, our device for sensing a human's locomotion has very sensitive characteristics sufficient for it to detect small movements. With only simple logic like a threshold-based classification, it is difficult to deliver the correct information continually. In order to overcome this and provide correct information in a timely manner, a probabilistic gait-phase classification algorithm is proposed. Experimental results demonstrate that the proposed algorithm offers excellent accuracy.

Study on the Shortest Path finding of Engine Room Patrol Robots Using the A* Algorithm (A* 알고리즘을 이용한 기관실 순찰로봇의 최단 경로 탐색에 관한 연구)

  • Kim, Seon-Deok
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.2
    • /
    • pp.370-376
    • /
    • 2022
  • Smart ships related studies are being conducted in various fields owing to the development of technology, and an engine room patrol robot that can patrol the unmanned engine room is one such study. A patrol robot moves around the engine room based on the information learned through artificial intelligence and checks the machine normality and occurrence of abnormalities such as water leakage, oil leakage, and fire. Study on engine room patrol robots is mainly conducted on machine detection using artificial intelligence, however study on movement and control is insufficient. This causes a problem in that even if a patrol robot detects an object, there is no way to move to the detected object. To secure maneuverability to quickly identify the presence of abnormality in the engine room, this study experimented with whether a patrol robot can determine the shortest path by applying the A* algorithm. Data were obtained by driving a small car equipped with LiDAR in the ship engine room and creating a map by mapping the obtained data with SLAM(Simultaneous Localization And Mapping). The starting point and arrival point of the patrol robot were set on the map, and the A* algorithm was applied to determine whether the shortest path from the starting point to the arrival point was found. Simulation confirmed that the shortest route was well searched while avoiding obstacles from the starting point to the arrival point on the map. Applying this to the engine room patrol robot is believed to help improve ship safety.

Development of Pose-Invariant Face Recognition System for Mobile Robot Applications

  • Lee, Tai-Gun;Park, Sung-Kee;Kim, Mun-Sang;Park, Mig-Non
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.783-788
    • /
    • 2003
  • In this paper, we present a new approach to detect and recognize human face in the image from vision camera equipped on the mobile robot platform. Due to the mobility of camera platform, obtained facial image is small and pose-various. For this condition, new algorithm should cope with these constraints and can detect and recognize face in nearly real time. In detection step, ‘coarse to fine’ detection strategy is used. Firstly, region boundary including face is roughly located by dual ellipse templates of facial color and on this region, the locations of three main facial features- two eyes and mouth-are estimated. For this, simplified facial feature maps using characteristic chrominance are made out and candidate pixels are segmented as eye or mouth pixels group. These candidate facial features are verified whether the length and orientation of feature pairs are suitable for face geometry. In recognition step, pseudo-convex hull area of gray face image is defined which area includes feature triangle connecting two eyes and mouth. And random lattice line set are composed and laid on this convex hull area, and then 2D appearance of this area is represented. From these procedures, facial information of detected face is obtained and face DB images are similarly processed for each person class. Based on facial information of these areas, distance measure of match of lattice lines is calculated and face image is recognized using this measure as a classifier. This proposed detection and recognition algorithms overcome the constraints of previous approach [15], make real-time face detection and recognition possible, and guarantee the correct recognition irregardless of some pose variation of face. The usefulness at mobile robot application is demonstrated.

  • PDF

Intelligent Hexapod robot for the support walking of the aged (고령자 보행 지원을 위한 지능형 6족 로봇)

  • Lee, Sang-Mu;Kim, Sang-Hoon
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.534-539
    • /
    • 2008
  • This paper is about intelligent hexapod robot for the support walking of the aged person. The robot using various sensors and small camera has various abilities of forward backward walking, turing left or right, control the speed of walking, avoiding the obstacles and detecting risky situation of fire or gas. To let the aged feel soft and safe walking, we used special servo motor and developed hexapod walking mechanism and effective algorithm.

  • PDF

Application of reinforcement learning to hyper-redundant system Acquisition of locomotion pattern of snake like robot

  • Ito, K.;Matsuno, F.
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2001.01a
    • /
    • pp.65-70
    • /
    • 2001
  • We consider a hyper-redundant system that consists of many uniform units. The hyper-redundant system has many degrees of freedom and it can accomplish various tasks. Applysing the reinforcement learning to the hyper-redundant system is very attractive because it is possible to acquire various behaviors for various tasks automatically. In this paper we present a new reinforcement learning algorithm "Q-learning with propagation of motion". The algorithm is designed for the multi-agent systems that have strong connections. The proposed algorithm needs only one small Q-table even for a large scale system. So using the proposed algorithm, it is possible for the hyper-redundant system to learn the effective behavior. In this algorithm, only one leader agent learns the own behavior using its local information and the motion of the leader is propagated to another agents with time delay. The reward of the leader agent is given by using the whole system information. And the effective behavior of the leader is learned and the effective behavior of the system is acquired. We apply the proposed algorithm to a snake-like hyper-redundant robot. The necessary condition of the system to be Markov decision process is discussed. And the computer simulation of learning the locomotion is demonstrated. From the simulation results we find that the task of the locomotion of the robot to the desired point is learned and the winding motion is acquired. We can conclude that our proposed system and our analysis of the condition, that the system is Markov decision process, is valid.

  • PDF

Goal-oriented Geometric Model Based Intelligent System Architecture for Adaptive Robotic Motion Generation in Dynamic Environment

  • Lee, Dong-Hun;Hwang, Kyung-Hun;Chung, Chae-Wook;Kuc, Tae-Yong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2568-2574
    • /
    • 2005
  • Control architecture of the action based robot engineering can be divided into two types of deliberate type - and reactive type- controller. Typical deliberate type, slow in reaction speed, is well suited for the realization of the higher intelligence with its capability to forecast on the basis of environmental model according to time flow, while reactive type is suitable for the lower intelligence as it fits to the realization of speedy reactive action by inputting the sensor without a complete environmental model. Looking at the environments in the application areas in which robots are actually used, we can see that they have been mostly covered by the uncertain and unknown dynamic changes depending on time and place, the previously known knowledge being existed though. It may cause, therefore, any deterioration of the robot performance as well as further happen such cases as the robots can not carry out their desired performances, when any one of these two types is solely engaged. Accordingly this paper aims at suggesting Goal-oriented Geometric Model(GGM) Based Intelligent System Architecture which leads the actions of the robots to perform their jobs under variously changing environment and applying the suggested system structure to the navigation issues of the robots. When the robots do perform navigation in human life changing in a various manner with time, they can appropriately respond to the changing environment by doing the action with the recognition of the state. Extending this concept to cover the highest hierarchy without sticking only to the actions of the robots can lead us to apply to the algorithm to perform various small jobs required for the carrying-out of a large main job.

  • PDF

The influences of sex on the human emotions toward robots

  • Ben-Lamine, Mohamed-Sahbi;Shibata, Satoru;Kanya, Tanaka;Shimizu, Akira
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.191-194
    • /
    • 1995
  • This paper evaluates the influences of sex on the human emotions while coexisting with robots. When we consider human vision, robot's motion is the most important parameter which influences human emotions and must be well controlled for males and females emotions. On the other hand, when we consider human touch of sense, which is effective for cooperation transmitting mutual forces, the softness of robot is an important parameter for human emotions and must be also well controlled for males and females emotions. From these points of view, at first, we evaluate robot's motion under four different shapes of velocity pattern while handing over a cup to humans. Second, we evaluate robot's softness realized by impedance control. From the first experiment, we concluded that the conditions of choosing an adequate maximum velocity value and locating the velocity peak at the center or the first half of the duration are necessary for male's emotions. In addition, the smooth velocity decrease in the last part of the velocity pattern's duration is desired for female's emotions. From the second experiment, we concluded that females prefer lighter values of virtual impedance characteristics than males and any small increase on the heaviness of virtual impedance values is followed by the negative exponential change on human emotions.

  • PDF