• Title/Summary/Keyword: Small robot

Search Result 492, Processing Time 0.038 seconds

Study on Design of Heavy Payload Robot Considering Design Factor of Gravity Compensator (중력보상장치 설계계수를 고려한 고가반 로봇설계에 관한 연구)

  • Lee, Do-Seung;Lee, Ho-Su;Pyo, Sang-Hun;Yoon, Jung-Won;Lyu, Sung-Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.5
    • /
    • pp.23-28
    • /
    • 2019
  • In recent years, medium- to large-scale transportation machinery and machine tool manufacturing process lines have shown a trend toward centralization, softening, lightening, and slimming to reduce costs and increase productivity. This has increased the demand for vertical articulated robots. When developing and introducing a heavy weight-handling robot that can be easily applied to existing production lines, it is expected to have a great effect in securing industrial competitiveness by solving industrial issues such as the decreased productivity and increased risk of accidents due to work involving heavy lifting. In this study, we design a 6-axis robot mechanism with a heavy load-handling capacity of 700kg or more for large-sized materials of various types supplied in small quantities.

Heading Control of URI-T, an Underwater Cable Burying ROV: Theory and Sea Trial Verification (URI-T, 해저 케이블 매설용 ROV의 선수각 제어 및 실해역 검증)

  • Cho, Gun Rae;Kang, Hyungjoo;Lee, Mun-Jik;Li, Ji-Hong
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.178-188
    • /
    • 2019
  • When burying underwater cables using robots, heading control is one of the key functions for the robots to improve task efficiency. This paper addresses the heading control issue for URI-T, an ROV for underwater construction tasks, including the burial and maintenance of cables or small diameter pipelines. Through modeling and identifying the heading motion of URI-T, the dynamic characteristics and input limitation are analyzed. Based on the identification results, a PD type controller with appropriate input treatment is designed for the heading control of URI-T. The performance of the heading controller was verified in water tank experiments. The field applicability of the proposed controller was also evaluated through the sea trial of URI-T at the East Sea, with a water depth of 500 m.

Distributed beamforming with one-bit feedback and clustering for multi-node wireless energy transfer

  • Lee, Jonghyeok;Hwang, SeongJun;Hong, Yong-gi;Park, Jaehyun;Byun, Woo-Jin
    • ETRI Journal
    • /
    • v.43 no.2
    • /
    • pp.221-231
    • /
    • 2021
  • To resolve energy depletion issues in massive Internet of Things sensor networks, we developed a set of distributed energy beamforming methods with one-bit feedback and clustering for multi-node wireless energy transfer, where multiple singleantenna distributed energy transmitters (Txs) transfer their energy to multiple nodes wirelessly. Unlike previous works focusing on distributed information beamforming using a single energy receiver (Rx) node, we developed a distributed energy beamforming method for multiple Rx nodes. Additionally, we propose two clustering methods in which each Tx node chooses a suitable Rx node. Furthermore, we propose a fast distributed beamforming method based on Tx sub-clustering. Through computer simulations, we demonstrate that the proposed distributed beamforming method makes it possible to transfer wireless energy to massive numbers of sensors effectively and rapidly with small implementation complexity. We also analyze the energy harvesting outage probability of the proposed beamforming method, which provides insights into the design of wireless energy transfer networks with distributed beamforming.

Micro-machining system technology (초소형 미세가공 시스템 기술)

  • 박종권;이득우
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.459-465
    • /
    • 2004
  • Micro-factory is a small system to produce a small parts and this manufacturing system has advantages such as energy saving, resources saving, and manufacturing space saving. Micro-factory are classified according to production type and has many applications in various industry. In this paper, the basic concept and applications of micro-factory are introduced.

  • PDF

A Study on Implementation of Service Robot Platform for Mess-Cleanup (정리정돈용 서비스 로봇 플랫폼의 구현 연구)

  • Kim, Seung-Woo;Kim, Hi-Jun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.5
    • /
    • pp.487-495
    • /
    • 2012
  • In this paper, a Smart Home Service Robot, McBot II, which performs mess-cleanup function etc. in house, is designed much more optimally than other service robots. It is newly developed in much more practical system than McBot I which we had developed two years ago. One characteristic attribute of mobile platforms equipped with a set of dependent wheels is their omni- directionality and the ability to realize complex translational and rotational trajectories for agile navigation in door. An accurate coordination of steering angle and spinning rate of each wheel is necessary for a consistent motion. This paper develops trajectory controller of 3-wheels omni-directional mobile robot using fuzzy azimuth estimator. A specialized anthropomorphic robot manipulator which can be attached to the housemaid robot McBot II, is developed in this paper. This built-in type manipulator consists of both arms with 4 DOF (Degree of Freedom) each and both hands with 3 DOF each. The robotic arm is optimally designed to satisfy both the minimum mechanical size and the maximum workspace. Minimum mass and length are required for the built-in cooperated-arms system. But that makes the workspace so small. This paper proposes optimal design method to overcome the problem by using neck joint to move the arms horizontally forward/backward and waist joint to move them vertically up/down. The robotic hand, which has two fingers and a thumb, is also optimally designed in task-based concept. Finally, the good performance of the developed McBot II is confirmed through live tests of the mess-cleanup task.

Implementation of LabVIEW®-based Joint-Linear Motion Blending on a Lab-manufactured 6-Axis Articulated Robot (RS2) (LabVIEW® 기반 6축 수직 다관절 로봇(RS2)의 이종 모션 블랜딩 연구)

  • Lee, D.S.;Chung, W.J.;Jang, J.H.;Kim, M.S.
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.2
    • /
    • pp.318-323
    • /
    • 2013
  • For fast and accurate motion of 6-axis articulated robot, more noble motion control strategy is needed. In general, the movement strategy of industrial robots can be divided into two kinds, PTP (Point to Point) and CP (Continuous Path). Recently, industrial robots which should be co-worked with machine tools are increasingly needed for performing various jobs, as well as simple handling or welding. Therefore, in order to cope with high-speed handling of the cooperation of industrial robots with machine tools or other devices, CP should be implemented so as to reduce vibration and noise, as well as decreasing operation time. This paper will realize CP motion (especially joint-linear) blending in 3-dimensional space for a 6-axis articulated (lab-manufactured) robot (called as "RS2") by using LabVIEW$^{(R)}$ (6) programming, based on a parametric interpolation. Another small contribution of this paper is the proposal of motion blending simulation technique based on Recurdyn$^{(R)}$ V7 and Solidworks$^{(R)}$, in order to figure out whether the joint-linear blending motion can generate the stable motion of robot in the sense of velocity magnitude at the end-effector of robot or not. In order to evaluate the performance of joint-linear motion blending, simple PTP (i.e., linear-linear) is also physically implemented on RS2. The implementation results of joint-linear motion blending and PTP are compared in terms of vibration magnitude and travel time by using the vibration testing equipment of Medallion of Zonic$^{(R)}$. It can be confirmed verified that the vibration peak of joint-linear motion blending has been reduced to 1/10, compared to that of PTP.

A study on design, experiment control of the waterproof robot arm (방수형 로봇팔의 설계, 실험 및 제어 연구)

  • Ha, Jihoon;Joo, Youngdo;Kim, Donghee;Kim, Joon-Young;Choi, Hyeung-Sik
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.6
    • /
    • pp.648-657
    • /
    • 2014
  • This paper is about the study on a newly developed small waterproofed 4-axis robot arm and the analysis of its kinematics and dynamics. The structure of robot arm is designed to have Pitch-Pitch-Pitch-Yaw joint motion for inspection using a camera on itself and the joint actuator driving capacity are selected and the joint actuators are designed and test for 10m waterproofness. The closed-form solution for the robot arm is derived through the forward and inverse kinematics analysis. Also, the dynamics model equation including the damping force due to the mechanical seal for waterproofness is derived using Newton-Euler method. Using derived dynamics equation, a sliding mode controller is designed to track the desired path of the developed robot arm, and its performance is verified through a simulation.

Attitude Learning of Swarm Robot System using Bluetooth Communication Network (블루투스 통신 네트워크를 이용한 군집합로봇의 행동학습)

  • Jin, Hyun-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.3
    • /
    • pp.137-143
    • /
    • 2009
  • Through the development of techniques, robots are becomes smaller, and many of robots needed for application are greater and greater. Method of coordinating large number of autonomous robots through local interactions has becoming an important research issue in robot community. Swarm Robot System is a system that independent autonomous robots in the restricted environment infer their status from preassigned conditions and operate their jobs through the coorperation with each other. Within the SRS,a robot contains sensor part to percept the situation around them, communication part to exchange information, and actuator part to do a work. Specially, in order to cooperate with other robots, communicating with other robot is one of the essential elements. In such as Bluetooth has many adventages such as low power consumption, small size module package, and various standard procotols, it is rated as one of the efficent communcating system for autonomous robot is developed in this paper. and How to construct and what kind of procedure to develop the communicatry system for group behavior of the SRS under intelligent space is discussed in this paper.

  • PDF

Development of a Moving Platform for a Upright Running Mobile Robot Based on an Inverted Pendulum Mechanism (역진자 기구에 기반한 직립주행 가능 이동로봇용 구동 플랫폼 개발)

  • Lee, Se-Han;Rhee, Sang-Yong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.5
    • /
    • pp.570-576
    • /
    • 2012
  • In this research a moving platform for a mobile robot which can run with upright posture is proposed. It is able to stand with standing arms and run uprightly based on an inverted pendulum mechanism. Conventional mobile robots generally may equip 4 wheels or 3 wheels including a caster and have good statistic stability. They need a steering mechanism to choose which way to go since they have a square or rectangular configuration with multiple wheels. When a mobile robot meets a sharply perpendicular and narrow crossroad, it may need a special steering scheme such as going forward and backward repeatedly or it sometimes cannot even pass through the crossroad because of its size. The proposed moving platform for a mobile robot changes to a upright posture which has a small planar area and is able to pass through the crossroad. We propose a moving platform for a mobile robot with a inverted pendulum mechanism and standing arms which can make the mobile robot upright.