• Title/Summary/Keyword: Small protein

Search Result 1,755, Processing Time 0.027 seconds

Comparative Analysis of Serum Proteomes of Moyamoya Disease and Normal Controls

  • Koh, Eun-Jeong;Kim, Han-Na;Ma, Tian-Ze;Choi, Ha-Young;Kwak, Yong-Geun
    • Journal of Korean Neurosurgical Society
    • /
    • v.48 no.1
    • /
    • pp.8-13
    • /
    • 2010
  • Objective : The etiology and pathogenesis of moyamoya disease remain unclear. Furthermore, the definitive diagnostic protein-biomarkers for moyamoya disease are still unknown. The present study analyzed serum proteomes from normal controls and moyamoya patients to identify novel serological biomarkers for diagnosing moyamoya disease. Methods : We compared the two-dimensional electrophoresis patterns of sera from moyamoya disease patients and normal controls and identified the differentially-expressed spots by matrix-assisted laser desorption/ionization-time-of flight mass spectrometry and electrospray ionization quadruple time-of-flight mass spectrometry. Results : We found and analyzed 22 differently-expressed proteomes. Two proteins were up-regulated. Twenty proteins were down-regulated. Complement C1 inhibitor protein and apolipoprotein C-III showed predominantly changed expressions (complement C1 inhibitor protein averaged a 7.23-fold expression in moyamoya patients as compared to controls, while apolipoprotein C-III averaged a 0.066-fold expression). Conclusion : Although our study had a small sample size, our proteomic data provide serologic clue proteins for understanding moyamoya disease.

Type 3 muscarinic acetylcholine receptor stimulation is a determinant of endothelial barrier function and adherens junctions integrity: role of protein-tyrosine phosphatase 1B

  • Jiao, Zhou-Yang;Wu, Jing;Liu, Chao;Wen, Bing;Zhao, Wen-Zeng;Du, Xin-Ling
    • BMB Reports
    • /
    • v.47 no.10
    • /
    • pp.552-557
    • /
    • 2014
  • The main purpose of this study was to investigate whether type 3 muscarinic acetylcholine receptor (M3R) dysfunction induced vascular hyperpermeability. Transwell system analysis showed that M3R inhibition by selective antagonist 4-diphenylacetoxy-N-methylpiperidine methiodide (4-DAMP) and small interfering RNA both increased endothelial permeability. Using coimmunoprecipitation and Western blot assay, we found that M3R inhibition increased VE-cadherin and ${\beta}$-catenin tyrosine phosphorylation without affecting their expression. Using PTP1B siRNA, we found that PTP1B was required for maintaining VE-cadherin and ${\beta}$-catenin protein dephosphorylation. In addition, 4-DAMP suppressed PTP1B activity by reducing cyclic adenosine monophosphate (cAMP), but not protein kinase $C{\alpha}$ ($PKC{\alpha}$). These data indicate that M3R preserves the endothelial barrier function through a mechanism potentially maintaining PTP1B activity, keeping the adherens junction proteins (AJPs) dephosphorylation.

Induction of RNA-mediated Resistance to Papaya Ringspot Virus Type W

  • Krubphachaya, Pongrit;Juricek, Mila;Kertbundit, Sunee
    • BMB Reports
    • /
    • v.40 no.3
    • /
    • pp.404-411
    • /
    • 2007
  • Transformation of cantaloupes with the coat protein (cp) gene of papaya ringspot virus type W (PRSV-W), Thai isolate, was used to introduce virus resistance. Binary vectors containing either the full length coat protein coding region under control of the 35S CaMV promoter(pSA1175), or the inverted-repeat of a coat protein coding region (pSA1304), were constructed and used for Agrobacteriummediated transformation of cotyledonary explants of the cantaloupe cultivar Sun Lady. Four independent transgenic lines were obtained using pSA1304 and one using pSA1175. Integration of the PRSV-W cp gene into the genome of these transgenic lines was verified by PCR amplification, GUS assays and Southern blot hybridization. In vitro inoculation of these lines with PRSV-W revealed that whereas the line containing pSA1175 remained sensitive, the four lines containing pSA1304 were resistant. The presence of small RNA species, presumably siRNA, corresponding to regions of the viral cp gene in transgenic lines resistant to PRSV-W supports the involvement of post-transcriptional gene silencing in the establishment of resistance.

Induction of MAP kinase phosphatase 3 through Erk/MAP kinase activation in three oncogenic Ras (H-, K- and N-Ras)-expressing NIH/3T3 mouse embryonic fibroblast cell lines

  • Koo, JaeHyung;Wang, Sen;Kang, NaNa;Hur, Sun Jin;Bahk, Young Yil
    • BMB Reports
    • /
    • v.49 no.7
    • /
    • pp.370-375
    • /
    • 2016
  • Ras oncoproteins are small molecular weight GTPases known for their involvement in oncogenesis, which operate in a complex signaling network with multiple effectors. Approximately 25% of human tumors possess mutations in a member of this family. The Raf1/MEK/Erk1/2 pathway is one of the most intensively studied signaling mechanisms. Different levels of regulation account for the inactivation of MAP kinases by MAPK phosphatases in a cell type- and stimuli-dependent manner. In the present study, using three inducible Ras-expressing NIH/3T3 cell lines, we demonstrated that MKP3 upregulation requires the activation of the Erk1/2 pathway, which correlates with the shutdown of this pathway. We also demonstrated, by applying pharmacological inhibitors and effector mutants of Ras, that induction of MKP3 at the protein level is positively regulated by the oncogenic Ras/Raf/MEK/Erk1/2 signaling pathway.

Immunocytochemical Localization of Vicilin in Endosperm Cells of Panax ginseng C.A. Meyer (인삼(Panax ginseng C.A. Meyer) 배유세포내 Vicilin의 면역세포화학적 분포)

  • 이창섭
    • Journal of Plant Biology
    • /
    • v.35 no.2
    • /
    • pp.99-106
    • /
    • 1992
  • The endosperm protein, vicilin, of ginseng (Panax ginseng C.A. Meyer) was purified by ammonium sulfate precipitaion, gel permeation and ion exchange column chromatography. Vicilin is a glycoprotein composed of 2 subunits with molecular masses of 55,000 (large subunit) and 44,000 (small subunit). The anti-vicilin antibody was raised in rabbit, and purified by DEAE Affi-Gel Blue affinity chromatography. The endosperm cells of the seed were reacted with this anti-vicilin antibody and colloidal gold conjugated secondary antibody. Gold particles were labelled on the elaborating granules of Golgi complex, electron-dense granules and protein bodies in the endosperm cells. These results indicated that the vicilin, which was synthesized in rough endoplasmic reticulum and transported to Golgi, was elaborated in saccules of the Golgi and then transported into protein bodies by electron-dense granules.anules.

  • PDF

Effect of Ensiling Sudax Fodder with Broiler Litter and Candida Yeast on the Changes in pH, Lactic Acid and Nitrogen Fractions

  • Rasool, S.;Gilani, A.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.10 no.1
    • /
    • pp.98-105
    • /
    • 1997
  • Sudax fodder (Sorghum sudanense ${\times}$ Sorhum vulgare) was ensiled in laboratory silos with or without 20, 30, or 40 percent broiler litter and 6 percent molasses with or without Candida yeast. The samples were analyzed for pH, lactic acid and nitrogen fractions at the start of the experiment and at 5 days interval, thereafter till 40 days. A sharp decline in pH and increase in lactic acid content was observed on fifth day of ensiling. Thereafter, the rate of pH decline decreased till 20 days and that of lactic acid increase till 25 days and the remained constant. Increasing levels of broiler litter had adverse effect on pH drop and lactic acid increase of silages. Total-N content of the silages had little variation throughout the ensiling period. A sharp decline in protein-N and increase in ammonia-N content was observed on day 5 of ensiling. Thereafter, the content of protein-N increased till 20 days and that of ammonia-N decreased till 15 days, but these changes were very small compared to that occurred during the first 5 days of ensiling. The level of broiler litter had inverse relationship with protein degradation and direct relationship with ammonia production. The yeast inoculum failed to produce any significant effect.

Non-specific in vivo inhibition of CK1 by the pyridinyl imidazole p38 inhibitors SB 203580 and SB 202190

  • Shanware, Naval P.;Williams, Leah M.;Bowler, Michael J.;Tibbetts, Randal S.
    • BMB Reports
    • /
    • v.42 no.3
    • /
    • pp.142-147
    • /
    • 2009
  • Small-molecule inhibitors of protein kinases have contributed immensely to our understanding of biological signaling path-ways and have been exploited therapeutically for the treatment of cancers and other disease states. The pyridinyl imidazole compounds SB 203580 and SB 202190 were identified as ATP competitive antagonists of the p38 stress-activated protein kinases and have been widely used to elucidate p38-dependent cellular processes. Here, we identify SB 203580 and SB 202190 as potent inhibitors of stress-induced CREB phosphorylation on Serine 111 (Ser-111) in intact cells. Unexpectedly, we found that the inhibitory activity of SB 203580 and SB 202190 on CREB phosphorylation was independent of p38, but instead correlated with inhibition of casein kinase 1 (CK1) in vitro. The inhibition of CK1-mediated CREB phosphorylation by concentrations of pyridinyl imidazoles commonly employed to suppress p38, suggests that in some cases conclusions of p38-dependence derived solely from the use of these inhibitors may be invalid.

Inhibition of melanogenesis by tyrosinase siRNA in human melanocytes

  • An, Sang-Mi;Koh, Jae-Sook;Boo, Yong-Chool
    • BMB Reports
    • /
    • v.42 no.3
    • /
    • pp.178-183
    • /
    • 2009
  • Tyrosinase (TYR) plays a critical role in cellular melanogenesis and, thus, has been the major target of pharmacological approaches for the control of skin pigmentation. This study examined an alternative molecular approach using TYR-small interfering RNA (siRNA) to control melanogenesis in the human melanocytes. Both the mRNA and protein levels of TYR were significantly lowered by TYR-siRNA treatment, whereas TYR-related protein 1 and TYR-related protein 2 displayed no such changes. TYR-siRNA treatment inhibited the cellular melanin synthesis from the externally supplied TYR substrate L-tyrosine. TYR-siRNA also suppressed melanin synthesis and decreased the viability of cells exposed to ultraviolet radiation, supporting a critical role of melanin in protection against ultraviolet radiation. These results suggest that molecular approaches using siRNA targeted to the enzymes of melanogenic pathway may provide a novel strategy for the control of cell pigmentation.

Development of a Constituent Prediction Model of Domestic Rice Using Near Infrared Reflectance Analyzer(I) -Constituent Prediction Model of Brown and Milled Rice- (근적외선분석계를 이용한 국내산 쌀의 성분예측모델 개발(I) -현미와 백미의 성분예측모델-)

  • 한충수;동하원강
    • Journal of Biosystems Engineering
    • /
    • v.21 no.2
    • /
    • pp.198-207
    • /
    • 1996
  • To measure the moisture content, protein and viscosity of brown and milled rice with Near Infrared Reflectance(NIR) analyzer, the comparison and analysis of the data from the chemical analysis and NIR analyzer were conducted. The purpose of this study is to find out the fundamental data required for the prediction of rice qualify and taste rank, and to develop a measuring method of constituents and physical characteristics of domestic rice with NIR analyzer. The important results can be summarized as follows. 1. The $r^2$ and SEC of moisture calibration from brown rice powder were 0.87 and 0.09 respectively, those of milled rice powder were 0.95 and 0.08 respectively. 2. The $r^2$ and SEC of protein calibration from brown rice powder were 0.83 and 0.20 respectively, those of milled rice powder were 0.86 and 0.20 respectively. 3. The $r^2$ and SEC of viscosity calibration from brown rice powder were 0.36 and 15.50 respectively, those of milled rice powder were 0.55 and 12.98 respectively. Further study is required to develop better prediction model for viscosity. It is necessary the continuous study including wavelength selection, because $r^2$ is small for practical use. 4. The regression equation for one rice variety was nearly coincident with other. Therefore, it is required that the prediction model should be developed for the all rice samples.

  • PDF

Platform Technologies for Research on the G Protein Coupled Receptor: Applications to Drug Discovery Research

  • Lee, Sung-Hou
    • Biomolecules & Therapeutics
    • /
    • v.19 no.1
    • /
    • pp.1-8
    • /
    • 2011
  • G-protein coupled receptors (GPCRs) constitute an important class of drug targets and are involved in every aspect of human physiology including sleep regulation, blood pressure, mood, food intake, perception of pain, control of cancer growth, and immune response. Radiometric assays have been the classic method used during the search for potential therapeutics acting at various GPCRs for most GPCR-based drug discovery research programs. An increasing number of diverse small molecules, together with novel GPCR targets identified from genomics efforts, necessitates the use of high-throughput assays with a good sensitivity and specificity. Currently, a wide array of high-throughput tools for research on GPCRs is available and can be used to study receptor-ligand interaction, receptor driven functional response, receptor-receptor interaction,and receptor internalization. Many of the assay technologies are based on luminescence or fluorescence and can be easily applied in cell based models to reduce gaps between in vitro and in vivo studies for drug discovery processes. Especially, cell based models for GPCR can be efficiently employed to deconvolute the integrated information concerning the ligand-receptor-function axis obtained from label-free detection technology. This review covers various platform technologies used for the research of GPCRs, concentrating on the principal, non-radiometric homogeneous assay technologies. As current technology is rapidly advancing, the combination of probe chemistry, optical instruments, and GPCR biology will provide us with many new technologies to apply in the future.