• Title/Summary/Keyword: Small protein

Search Result 1,755, Processing Time 0.042 seconds

Effect of Water Table Depth in Different Soil Texture on Quality of Barley and Wheat Grain (토성별 지하수위가 밀, 보리의 품질에 미치는 영향)

  • 이홍석;구자환
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.40 no.3
    • /
    • pp.278-284
    • /
    • 1995
  • This experiment was performed to characterize the optimum water table level for the grain quality, seed germination and diastic power of barley(var. Olbori) and wheat(var. Grumil). Olbori and Grumil grew in the 550 liter plastic pot that filled with silt loam or sandy loam. During the whole growth period, the underground water level adjusted to be 20, 30, 40, 50 and 70cm. Filled grain ratio and specific gravity were not affected by soil texture and water table. Low level of water table caused the increase of 1,000 grain weight in wheat and barley, but soil texture didn't. Crude protein content tended to be high as the water table level was high, especially in wheat. Change in crude protein content was affected by underground water level more than soil texture. And the affection was slightly higher in sandy loam than silt loam, but the difference was small. The higher level of water table led to the lower crude lipid content in barley and wheat grain. Crude lipid content of both wheat and barley grain grown in sandy loam was higher than those grown in silt loam. As the water table level down, the ash content of barley and wheat grain tend to increase, especially in sandy loam. Wheat flour yield was not affected by soil texture. It was about 65% at 20cm of water level and above 67% at 40cm water level. The seed germination of wheat and barley was more than 95% when the seeds were placed at 2$0^{\circ}C$ for three days. Regardless of soil texture, the lowest germination was seen at 20cm of water table level. And the seed germination rate increased as the underground water level became low. Above 89% of barley grains were germinated within 48 hours except 20cm level of water table in sandy loam. Diastic power of germinated barley was the lowest at 20cm of water table level, and it was almost unchanged below 30cm of water table level. And also it was not affected by soil texture.

  • PDF

Influence of Seed-filling Temperature on the Seed Quality and Water Soaking Properties of Soybean (등숙온도가 콩의 품질 및 수분흡수 특성에 미치는 영향)

  • Jung, Gun-Ho;Kwon, Young-Up;Lee, Jae-Eun;Kim, Yul-Ho;Kim, Dae-Wook;Son, Beom-Young;Kim, Jung-Tae;Lee, Jin-Seok;Shin, Seong-Hyu;Baek, Seong-Bum;Lee, Byung-Moo;Chung, Ill-Min;Kim, Sun-Lim
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.58 no.3
    • /
    • pp.308-318
    • /
    • 2013
  • Korean soybean varieties, 'Seonyu' and 'Hwangkeum' were planted in 2012, and three temperature gradient, Tc($19.8^{\circ}C$, ambient temperatured), $Tc+1.7^{\circ}C$, and $Tc+2.5^{\circ}C$, were artificially created by controlling the green house system during seed filling period. Mature seeds that developed under these conditions were analyzed for variances in physicochemical properties. The 100-seed weight and seed-coat ratio of soybean were decreased, but small seed rate was increased by high temperature during seed filling period. Protein content was increased, but oil content was decreased significantly with increasing the seed filling temperature. The decrement of carbon to nitrogen ratio (C/N), and the increment of monosaccharide, fructose and sucrose, in seeds explained that carbohydrate assimilation during seed filling was restricted by high temperature. Rapid increments of seed volume and weight were observed in the seeds of high seed filling temperature, but as soaking time increased the highest values were observed in the seeds of ambient seed filling temperature. The 100-seed weight and seed-coat ratio of soybean were closely related not only to the increment of soaking volume and weight, but also the increments of total dissolved solids (TDS) and electro conductivity (EC). Whereas protein content and C/N ratio showed less relationship with the soaking properties, but they had a positive correlation with TDS and EC. From the results, it was considered that high values of TDS and EC in the seeds of high temperature were mainly due to the incomplete conversion of assimilates into storage compounds. However, sugar content showed less influence on the soaking properties and the values of TDS and EC.

Gemcitabine-induced Cell Death in Lung Cancer Cells : the Role of p53 (폐암 세포에서 Gemcitabine에 의한 세포 사멸과 p53의 역할)

  • Kim, Doh-Hyung;Bae, Gang-U;Yong, Wha-Shim;Choi, Eun-Kyung;Kim, Youn-Seup;Park, Jae-Seuk;Jee, Young-Koo;Lee, Kye-Young
    • Tuberculosis and Respiratory Diseases
    • /
    • v.53 no.3
    • /
    • pp.275-284
    • /
    • 2002
  • Background : Gemcitabine is a new anti-cancer agent for treating non-small cell lung cancer. Functioning as an antimetabolite, it induces anti-cancer effects by suppressing DNA synthesis after being incorporated into the DNA as a cytosine arabinoside analogue. When Gemcitabine is incorporated into the DNA, the p53 gene may be activated by induction of the DNA defect. However, there are a few studies on the molecular mechanisms of Gemcitabine-induced cell death. This study examined the role of p53 in Gemcitabine-induced cell death. Methods : A549 and NCl-H358 lung cancer cells were used in this study. The cell viability test was done using a MTT assay at Gemcitabine concentrations of 10nM, 100nM, 1uM, 10uM and 100uM. A FACScan analysis with propium iodide staining was used for the cell cycle analysis. Western blot analysis was done to investigate the extent of p53 activation. For the functional knock-out of p53, stable A549-E6 cells and H358-E6 cells were transfected pLXSN-16E6SD which is over expresses the human papilloma virus E6 protein that constantly degrades p53 protein. The functional knock out of p53 was confirmed by Western blot analysis after treatment with a DNA damaging agent, doxorubicine. Results : Gemcitabine exhibited cell toxicity in dose-dependent fashion. The cell cycle analysis resulted in an S phase arrest. Western blot analysis significant p53 activation in time-dependent manner. Gemcitabine-induced cytotoxicity was reduced by 20-30% in the A549-E6 cells and the 30-40% in H358-E6 cells when compared with the A549-neo and H358-neo control cells. Conclusion : Gemcitabine induces an S phase arrest, as expected for the anti-metabolite, and activates the p53 gene, Furthermore, p53 might play an important role in Gemcitabine-induced cell death. Further investigation into the molecular mechanisms on how Gemcitabine activates the p53 gene and its signaling pathway are recommended.

Research and Development on the Traditional Fishery fermented Foods - Chemical composition of Helice tridens tientsinensis preserved in Brine - (한국 전통수산발효식품의 연구 및 개발 - 갈게(Helice tridens tientsinensis)장의 화학적 성분)

  • Choe, Sun-Nam;Kim, Jong-Bae;Yun, Sang-Sik
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.18 no.3
    • /
    • pp.209-217
    • /
    • 2006
  • In this study, chemical compositions of Helice tridens tientsinensis(Htt, sea crab) and changes of chemical compositions in fermented sea crab tested according to different storage days(10, 16, 20, 25, 29, 55, 61, 67). The average amount of chemical compositions in raw Htt, it contains 77.12% of moisture, 1.96% of ash, 18.93% of crude protein, 0.26% of crude lipid. During storage time the amount of moisture and crude protein decreased, but crude lipid and ash increased. The amount of volatile basic nitrogen in Htt showed 6.56 mg/100g. The fermented sea crab in brine stored at the temperature of $5^{\circ}C$ showed 23.72 mg/100g of freshness even after 55 days. It showed first stage of decomposition(31.69 mg/100g) after 61 days. it is most efficient to store fermented sea crab at a low temperature. The amount of free amino acid composition in fresh Htt, was measured as follow ;arginine(1140.88 mg/100g), alanine(311.26 mg/100g), prorine(214.63 mg/100g), serine(113.56 mg/100g), taurine(90.80 mg/100g). The amount of amino acid in fermented sea crab increased as the storage days increased. Fatty acid contents in fresh Htt showed the largest amount of erucic acid (27.39 area%) and pentadecenoic acid (19.44 area%), oleic acid (17.68 area%), palmitic acid (11.00 area%), stearic acid (6.89 area%), and elaidic acid (6.15 area%) in order. In fermented sea crab, a small change was noticed in quantity, but the obvious increased composions were palmitoleic and heneicosanoic acid etc.

Association of β-Catenin with Fat Accumulation in 3T3-L1 Adipocytes and Human Population (β-catenin 유전자의 3T3-L1 지방세포 및 인체에서의 지방축적 연관성 연구)

  • Bae, Sung-Min;Lee, Hae-Yong;Chae, Soo-Ahn;Oh, Dong-Jin;Park, Suk-Won;Yoon, Yoo-Sik
    • Journal of Life Science
    • /
    • v.21 no.9
    • /
    • pp.1301-1309
    • /
    • 2011
  • The major function of adipocytes is to store fat in the form of triglycerides. One of the signaling pathways known to affect adipogenesis, i.e. fat formation, is the WNT/${\beta}$-catenin pathway which inhibits the expression and activity of key regulators of adipogenesis. The purpose of this research is to find genes among the WNT/${\beta}$-catenin pathway which regulate adipogenesis by using small interfering (si) RNA and to find the association of single nucleotide polymorphisms (SNPs) of the gene with serum triglyceride levels in the human population. To elucidate the effects of ${\beta}$-catenin siRNA on adipogenesis key factors, PPAR${\gamma}$ and C/EBP${\alpha}$, we performed real-time PCR and western blotting experiments for the analyses of mRNA and protein levels. It was found that the siRNA-mediated knockdown of ${\beta}$-catenin upregulates adipogenesis key factors. However, upstream regulators of the WNT/${\beta}$-catenin pathway, such as DVL2 and LRP6, had no significant effects compared to ${\beta}$-catenin. These results indicate that ${\beta}$-catenin is a candidate gene for human fat accumulation. In general, serum triglyceride level is a good indicator of fat accumulation in humans. According to statistical analyses of the association between serum triglyceride level and SNPs of ${\beta}$-catenin, -10,288 C>T SNP (rs7630377) in the promoter region was significantly associated with serum triglyceride levels (p<0.05) in 290 Korean subjects. On the other hand, serum cholesterol levels were not significantly associated with SNPs of the ${\beta}$-catenin gene. The results of this study showed that ${\beta}$-catenin is associated with fat accumulation both in vitro and in the human population.

Sphingosine-1-Phosphate-Induced Migration and Differentiation of Human Mesenchymal Stem Cells to Smooth Muscle Cells (Sphingosine-1-phosphate에 의한 중간엽 줄기세포의 이동과 평활근세포로의 분화)

  • Song, Hae-Young;Shin, Sang-Hun;Kim, Min-Young;Kim, Jae-Ho
    • Journal of Life Science
    • /
    • v.21 no.2
    • /
    • pp.183-193
    • /
    • 2011
  • Migration and differentiation of mesenchymal stem cells are crucial for tissue regeneration in response to injury. Sphingosine-1-phosphate (S1P) is a bioactive lipid that regulates a variety of biological processes, including proliferation, survival, differentiation and motility. In the present study, we determined the role of S1P in migration and differentiation of human bone marrow-derived mesenchymal stem cells (BMSCs). S1P stimulated migration of BMSCs in a dose- and time-dependent manner, and pre-incubation of the cells with pertussis toxin completely abrogated S1P-induced migration, suggesting involvement of Gi-coupled receptors in S1P-induced cell migration. S1P elicited elevation of intracellular concentration of $Ca^{2+}$ ($[Ca^{2+}]_i$) and pretreatment with VPC23019, an antagonist of $S1P_1/S1P_3$, blocked S1P-induced migration and increase of $[Ca^{2+}]_i$. Small interfering RNA-mediated knockdown of endogenous $S1P_1$ attenuated S1P-induced migration of BMSCs. Furthermore, S1P treatment induced expression of $\alpha$-smooth muscle actin ($\alpha$-SMA), a smooth muscle marker, and pretreatment with VPC23019 abrogated S1P-induced $\alpha$-SMA expression. S1P induced phosphorylation of p38 mitogen-activated protein kinase (MAPK), and pretreatment of cells with SB202190, an inhibitor of p38 MAPK, or adenoviral overexpression of a dominant-negative mutant of the p38 MAPK blocked S1P-induced cell migration and $\alpha$-SMA expression. Taken together, these results suggest that S1P stimulates migration and smooth muscle differentiation of BMSCs through an $S1P_1$-p38 MAPK-dependent mechanism.

Changes in Components and Peptides during Fermentation of Cheonggookjang (청국장 발효시의 성분 변화 및 펩티드의 생성)

  • Ann, Yong-Geun
    • The Korean Journal of Food And Nutrition
    • /
    • v.24 no.1
    • /
    • pp.124-131
    • /
    • 2011
  • We analyzed content and peptides in order to investigate the productivity from Cheonggookjang(fast-fermented soybean paste), fermenting it for 180 hours at $40^{\circ}C$. Results showed that pH was 7.07 at the start and became 7.41 in 24 hours, it eventually increased to 8.63 after 180 hours. Acidity was 0.2 in 12 hours, 0.5 in 12 hours, and then remained on 0.1 thereafter. Total sugar was 1.54 mg/$m\ell$ at the start, but it gradually decreased to 0.76 mg/$m\ell$ after the lapse of 48 hours, and 1.0 mg/$m\ell$ in 120 hours, and finally 0.8 mg/$m\ell$ in 180 hours. Reducing sugar was 0.14 mg/$m\ell$ at the start, and 0.88 mg/$m\ell$ after the lapse of 24 hours, 0.64 mg/$m\ell$ in 48 hours, 0.26 mg/$m\ell$ in 72 hours, and showed no definite change untill 180 hours. The amount of free amino acid was $0.19\;{\mu}M/\ell$ at the start, and $4.88\;{\mu}M/\ell$ after the lapse of 72 hours, $4.5\;{\mu}M/\ell$ in 120 hours, and then it rapidly decreased to $0.23\;{\mu}M/\ell$ after180 hours. Absorbance of soluble protein and peptide at 280 nm was 12.4 in 48 hours, 31.12 in 120 hours, and 31.12 in 180 hours. HPLC revealed that in the fermentation process, large molecular proteins are hydrolyzed into small peptides and amino acids, and after the lapse of 48 hours the pattern became almost the same. The protease activity of Cheonggookjang was 0.011 unit/$m\ell$ after the lapse of 36 hours and then it decreased. The result shows as Cheonggookjang started its deamination of amino acid in 100 hours, it is desirable to produce peptide within 100 hours of its fermentation.

Molecular Miology of the Poliovirus (폴리오바이러스의 분자생물학)

  • 최원상
    • Journal of Life Science
    • /
    • v.7 no.4
    • /
    • pp.392-401
    • /
    • 1997
  • The poliovirus is a small, and non-enveloped virus. The RNA genome of poliovirus is continuous, linear, and has a single open reading frame. This polyprotein precursor is cleaved proteolytically to yield mature products. Most of the cleavages occur by viral protease. The mature proteins derived from the P1 polyprotein precursor are the structural components of the viral capsid. The initial cleavage by 2A protease is indirectly involved in the cleavage of a cellular protein p220, a subunit of the eukaryotic translation initiation factor 4F. This cleavage leads to the shut-off of cap-dependent host cell translation, and allows poliovirus to utilize the host cell machinery exclusively for translation its own RNA, which is initiated by internal ribosome entry via a cap-independent mechanism. The functional role of the 2B, 2C and 2BC proteins are not much known. 2B, 2C, 2BC and 3CD proteins are involved in the replication complex of virus induced vesicles. All newly synthesized viral RNAs are linked with VPg. VPg is a 22 amino acid polypeptide which is derived from 3AB. The 3C and 3CD are protease and process most of the cleavage sites of the polyprotein precursor. The 3C protein is also involved in inhibition of RNA polymerase II and III mediated transcription by converting host transcription factor to an inactive form. The 3D is the RNA dependent RNA polymerase. It is known that poliovirus replication follows the general pattern of positive strand RNA virus. Plus strand RNA is transcribed into complementary minus strand RNA that, in turn, is transcribed for the synthesis of plus strand RNA is transcribed into complementary minus strand RNA that, in turn, is transcribed for the synthesis of plus strand RNA strands. Poliovirus RNA synthesis occurs in a membranous environment but how the template RNA and proteins required for RNA replication assemble in the membrane is not much known. The RNA requirements for the encapsidation of the poliovirus genome (packaging signal) are totally unknown. The poliovirus infection cycle lasts approximately 6 hours.

  • PDF

A Formulated Korean Red Ginseng Extract Inhibited Nitric Oxide Production through Akt- and Mitogen Activated Protein Kinase-dependent Heme Oxygenase-1 Upregulation in Lipoteichoic Acid-stimulated Microglial Cells (홍삼추출액은 lipoteichoic acid로 자극된 소교세포에서 Akt 및 MAPK 의존적으로 heme oxygenase-1 발현을 유도함으로써 NO 생성을 억제함)

  • Shin, Ji Eun;Lee, Kyungmin;Kim, Ji-Hee;Madhi, Iskander;Kim, YoungHee
    • Journal of Life Science
    • /
    • v.29 no.4
    • /
    • pp.402-409
    • /
    • 2019
  • Korean red ginseng made from steaming and drying fresh ginseng has long been used as a traditional herbal medicine due to its effects on the immune, endocrine, and central nerve systems and its anti-inflammatory activity. In this study, we investigated the molecular mechanism responsible for the anti-inflammatory effects of a formulated Korean red ginseng extract (RGE) in response to lipoteichoic acid (LTA), a cell wall component of gram-positive bacteria. RGE inhibited LTA-induced nitric oxide (NO) secretion and inducible nitric oxide synthase (iNOS) expression in BV-2 microglial cells, without affecting cell viability. RGE also inhibited nuclear translocation of nuclear factor kappa B ($NF-{\kappa}B$) p65 and degradation of $I{\kappa}B-{\alpha}$. In addition, RGE increased the expression of heme oxygenase-1 (HO-1) in a dose-dependent manner, and the inhibitory effect of RGE on iNOS expression was abrogated by small interfering RNA-mediated knockdown of HO-1. Moreover, RGE induced nuclear translocation of nuclear factor E2-related factor 2 (Nrf2), a transcription factor that regulates HO-1 expression. Furthermore, the phosphoinositide-3-kinase (PI-3K) inhibitor and mitogen-activated protein kinase (MAPK) inhibitors suppressed RGE-mediated expression of HO-1, and RGE enhanced the phosphorylation of Akt, extracellular signal-regulated kinases (ERKs), p38, and c-JUN N-terminal kinases (JNKs). These results suggested that RGE suppressed the production of NO, a proinflammatory mediator, by inducing HO-1 expression via PI-3K/Akt- and MAPK-dependent signaling in LTA-stimulated microglia. The findings indicate that RGE could be used for the treatment of neuroinflammation induced by grampositive bacteria and that it may have therapeutic potential for various neuroinflammation-associated disorders.

Production and biological applications for marine proteins and peptides- An overview (해양생물로부터 기능성 펩티드의 생산 및 응용)

  • Kim, Se-Kwon;Byun, Hee-Guk
    • Food Science and Industry
    • /
    • v.51 no.4
    • /
    • pp.278-301
    • /
    • 2018
  • Although more than 80% of living organisms are found in marine ecosystems, only less than 10% of marine resources have been utilized for human food consumptions and other usages. It is well known that marine resources (fish, shellfish and algae) have exceptional nutritional properties; however, their functional characteristic has not been completely discovered. It is believed that metabolites (organic compounds, proteins, peptides, lipids, minerals, etc.) play an important role to show its biological properties. Marine proteins and peptides are considered to be future drugs due to their excellent biological activities with a fewer adverse side effect. Marine peptides show several biological activities, including antimicrobial, antioxidant, anti-inflammatory, anti-cancer, anti-viral, anti-tumor, anti-diabetic, anti-hypertensive, anti-coagulant, immunomodulatory, appetite suppressing and neuroprotective effects. Therefore, the pharmaceutical, nutraceutical, and cosmeceutical companies have been paid attention to the marine peptides to commercialize into products. This current review mainly focused on the above mentioned biological activities of marine peptides and protein hydrolysates as a functional food and pharmaceutical applications. To commercialize these materials in industrial level required large quantity in high-purity level, and it is complicated to produce huge quantity from the marine resources due to insufficient raw materials, unavailability of raw materials through a year, hinder the growth with geographical variations, and availability of compounds in extreme small quantities. The best solution for these issues is to introduce new modern technologies such as artificial intelligence robots, drones, submersibles and automated raw material harvesting vessels in farming industries instead of man power, which will lead to 4th industrial revolution.