• Title/Summary/Keyword: Small cell network

Search Result 209, Processing Time 0.021 seconds

MicroRNAs in Human Diseases: From Lung, Liver and Kidney Diseases to Infectious Disease, Sickle Cell Disease and Endometrium Disease

  • Ha, Tai-You
    • IMMUNE NETWORK
    • /
    • v.11 no.6
    • /
    • pp.309-323
    • /
    • 2011
  • MicroRNAs (miRNAs) are a class of naturally occurring small non-coding RNAs of about 22 nucleotides that have recently emerged as important regulators of gene expression at the posttranscriptional level. Recent studies provided clear evidence that microRNAs are abundant in the lung, liver and kidney and modulate a diverse spectrum of their functions. Moreover, a large number of studies have reported links between alterations of miRNA homeostasis and pathological conditions such as infectious diseases, sickle cell disease and endometrium diseases as well as lung, liver and kidney diseases. As a consequence of extensive participation of miRNAs in normal functions, alteration and/or abnormalities in miRNAs should have importance in human diseases. Beside their important roles in patterning and development, miRNAs also orchestrated responses to pathogen infections. Particularly, emerging evidence indicates that viruses use their own miRNAs to manipulate both cellular and viral gene expression. Furthermore, viral infection can exert a profound impact on the host cellular miRNA expression profile, and several RNA viruses have been reported to interact directly with cellular miRNAs and/or to use these miRNAs to augment their replication potential. Here I briefly summarize the newly discovered roles of miRNAs in various human diseases including infectious diseases, sickle cell disease and enodmetrium diseases as well as lung, liver and kidney diseases.

Efficient Data Transmission Scheme for Underwater Wireless Sensor Networks (수중 센서 네트워크를 위한 효율적인 데이터 전송 기법)

  • Park, Hyun-Hoon;Park, Jin-Ho;Lee, Jong-Geun;Kim, Sung-Un
    • Proceedings of the IEEK Conference
    • /
    • 2007.07a
    • /
    • pp.43-44
    • /
    • 2007
  • The Underwater Wireless Sensor Network (UWSN) consists of sensor nodes equipped with a small battery of limited energy resource. Hence, the energy efficiency is a key design issue that needs to be addressed in order to improve the lifetime of the network. In this paper, we use a hexagon tessellation with and ideal cell size to deploy the underwater sensor nodes for the UWSN and propose an enhanced hybrid transmission method that considers the load balancing once the data transmission occurs.

  • PDF

Involvement of EBV-encoded BART-miRNAs and Dysregulated Cellular miRNAs in Nasopharyngeal Carcinoma Genesis

  • Xie, Yuan-Jie;Long, Zhi-Feng;He, Xiu-Sheng
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.10
    • /
    • pp.5637-5644
    • /
    • 2013
  • The definite molecular mechanisms underlying the genesis of nasopharyngeal carcinomas (NPCs) remain to be completely elucidated. miRNAs are small non-coding RNAs which are implicated in cell proliferation, apoptosis, and even carcinogenesis through negatively regulating gene expression post-transcriptionally. EBV was the first human virus found to express miRNAs. EBV-encoded BART-miRNAs and dysregulated cellular miRNAs are involved in carcinogenesis of NPC by interfering in the expression of viral and host cell genes related to immune responses and perturbing signal pathways of proliferation, apoptosis, invasion, metastasis and even radio-chemo-therapy sensitivity. Additional studies on the roles of EBV-encoded miRNAs and cellular miRNAs will provide new insights concerning the complicated gene regulated network and shed light on novel strategies for the diagnosis, therapy and prognosis of NPC.

Proteomic analysis of androgen-independent growth in low and high passage human LNCaP prostatic adenocarcinoma cells

  • Youm, Yun-Hee;Kim, Se-Yoon;Bahk, Young-Yil;Yoo, Tag-Keun
    • BMB Reports
    • /
    • v.41 no.10
    • /
    • pp.722-727
    • /
    • 2008
  • The present study compared the proteomic characteristics of a low passage number (L-33) and high passage number (H-81) LNCaP cell clone. Marked differences in protein expression were noted in the response of L-33 and H-81 cells to androgens. To investigate if regulation of these proteins was androgen-dependent, expression of the androgen receptor was silenced via small interfering RNA. Consistent with the proteomic data, abrogation of androgen receptor production in H-81 cells resulted in the reversed expression level into L-33 cells compared with non-treated H-81 LNCaP cells. The results clarify the progression into an androgen-independent phenotype.

u-EMS : An Emergency Medical Service based on Ubiquitous Sensor Network using Bio-Sensors (u-EMS : 바이오 센서 네트워크 기반의 응급 구조 시스템)

  • Kim, Hong-Kyu;Moon, Seung-Jin
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.13 no.7
    • /
    • pp.433-441
    • /
    • 2007
  • The bio-Sensors, which are sensing the vital signs of human bodies, are largely used by the medical equipment. Recently, the sensor network technology, which composes of the sensor interface for small-seize hardware, processor, the wireless communication module and battery in small sized hardware, has been extended to the area of bio-senor network systems due to the advances of the MEMS technology. In this paper we have suggested a design and implementation of a health care information system(called u-EMS) using a bio-sensor network technology that is a combination of the bio-sensor and the sensor network technology. In proposed system, we have used the following vital body sensors such as EKG sensor, the blood pressure sensor, the heart rate sensor, the pulse oximeter sensor and the glucose sensor. We have collected various vital sign data through the sensor network module and processed the data to implement a health care measurement system. Such measured data can be displayed by the wireless terminal(PDA, Cell phone) and the digital-frame display device. Finally, we have conducted a series of tests which considered both patient's vital sign and context-awared information in order to improve the effectiveness of the u-EMS.

The Immunosuppressive Potential of Cholesterol Sulfate Through T Cell Microvilli Disruption

  • Jeong-Su Park;Ik-Joo Chung;Hye-Ran Kim;Chang-Duk Jun
    • IMMUNE NETWORK
    • /
    • v.23 no.3
    • /
    • pp.29.1-29.23
    • /
    • 2023
  • Cholesterol (CL) is required for various biomolecular production processes, including those of cell membrane components. Therefore, to meet these needs, CL is converted into various derivatives. Among these derivatives is cholesterol sulfate (CS), a naturally produced CL derivative by the sulfotransferase family 2B1 (SULT2B1), which is widely present in human plasma. CS is involved in cell membrane stabilization, blood clotting, keratinocyte differentiation, and TCR nanocluster deformation. This study shows that treatment of T cells with CS resulted in the decreased surface expression of some surface T-cell proteins and reduced IL-2 release. Furthermore, T cells treated with CS significantly reduced lipid raft contents and membrane CLs. Surprisingly, using the electron microscope, we also observed that CS led to the disruption of T-cell microvilli, releasing small microvilli particles containing TCRs and other microvillar proteins. However, in vivo, T cells with CS showed aberrant migration to high endothelial venules and limited infiltrating splenic T-cell zones compared with the untreated T cells. Additionally, we observed significant alleviation of atopic dermatitis in mice injected with CS in the animal model. Based on these results, we conclude that CS is an immunosuppressive natural lipid that impairs TCR signaling by disrupting microvillar function in T cells, suggesting its usefulness as a therapeutic agent for alleviating T-cell-mediated hypersensitivity and a potential target for treating autoimmune diseases.

CD5 Expression Dynamically Changes During the Differentiation of Human CD8+ T Cells Predicting Clinical Response to Immunotherapy

  • Young Ju Kim;Kyung Na Rho;Saei Jeong;Gil-Woo Lee;Hee-Ok Kim;Hyun-Ju Cho;Woo Kyun Bae;In-Jae Oh;Sung-Woo Lee;Jae-Ho Cho
    • IMMUNE NETWORK
    • /
    • v.23 no.4
    • /
    • pp.35.1-35.16
    • /
    • 2023
  • Defining the molecular dynamics associated with T cell differentiation enhances our understanding of T cell biology and opens up new possibilities for clinical implications. In this study, we investigated the dynamics of CD5 expression in CD8+ T cell differentiation and explored its potential clinical uses. Using PBMCs from 29 healthy donors, we observed a stepwise decrease in CD5 expression as CD8+ T cells progressed through the differentiation stages. Interestingly, we found that CD5 expression was initially upregulated in response to T cell receptor stimulation, but diminished as the cells underwent proliferation, potentially explaining the differentiation-associated CD5 downregulation. Based on the proliferation-dependent downregulation of CD5, we hypothesized that relative CD5 expression could serve as a marker to distinguish the heterogeneous CD8+ T cell population based on their proliferation history. In support of this, we demonstrated that effector memory CD8+ T cells with higher CD5 expression exhibited phenotypic and functional characteristics resembling less differentiated cells compared to those with lower CD5 expression. Furthermore, in the retrospective analysis of PBMCs from 30 non-small cell lung cancer patients, we found that patients with higher CD5 expression in effector memory T cells displayed CD8+ T cells with a phenotype closer to the less differentiated cells, leading to favorable clinical outcomes in response to immune checkpoint inhibitor (ICI) therapy. These findings highlight the dynamics of CD5 expression as an indicator of CD8+ T cell differentiation status, and have implications for the development of predictive biomarker for ICI therapy.

Capacity Analysis of Centralized Cognitive Radio Networks for Best-effort Traffics

  • Lin, Mingming;Hong, Xuemin;Xiong, Jin;Xue, Ke;Shi, Jianghong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.9
    • /
    • pp.2154-2172
    • /
    • 2013
  • A centralized cognitive radio (CR) network is proposed and its system capacity is studied. The CR network is designed with power control and multi-user scheduling schemes to support best-effort traffics under peak interference power constraints. We provide an analytical framework to quantify its system capacity, taking into account various key factors such as interference constraints, density of primary users, cell radius, the number of CR users, and propagations effects. Furthermore, closed-form formulas are derived for its capacities when only path loss is considered in the channel model. Semi-analytical expressions for the capacities are also given when more realistic channel models that include path loss, shadowing, and small-scale fading are used. The accuracy of the proposed analytical framework is validated by Monte Carlo simulations. Illustrated with a practical example, the provided analytical framework is shown to be useful for the strategic planning of centralized CR networks.

Implementation of a MAC protocol in ATM-PON

  • Kim, Tea-Min;Shin, Gun-Soon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.3
    • /
    • pp.586-597
    • /
    • 2004
  • MAC (Medium Access Control) protocol is necessary for a OLT (Optical Line Termination) to allocate bandwidth to ONUs (Optical Network Units) dynamically in ATM PON (Passive Optical Network) operated in a kind of optical subscriber network having tree topology. The OLT collect information about ONUs and provide all permission with each ONU effectively by means of MAC protocol. Major functions of MAC protocol are composed of the algorism for distributing permission demanded by a ONU dynamically and allocation all permission used in APON properly. Sometimes MAC get to be a element of limiting the whole operation speed and occupy a most frequent operation part of the TC (Transmission Convergence) function module so it have to be designed to guarantee the best quality for each traffic. This paper introduce the way of implementation of a algorism which satisfy all of the upper renditions. This MAC algorism allocate bandwidth according to a number of working ONU and the information of the queue length dynamically and distribute permission for same interval to minimize delay variation of each ONU cell. MAC scheduler for the dynamic bandwidth allocation which is introduced in this paper has look-up table structure that makes programming possible. This structure is very suitable for implementation and operated in high speed because it require very simple and small chip size.

A Receiver-Aided Seamless And Smooth Inter-RAT Handover At Layer-2

  • Liu, Bin;Song, Rongfang;Hu, Haifeng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.10
    • /
    • pp.4015-4033
    • /
    • 2015
  • The future mobile networks consist of hyper-dense heterogeneous and small cell networks of same or different radio access technologies (RAT). Integrating mobile networks of different RATs to provide seamless and smooth mobility service will be the target of future mobile converged network. Generally, handover from high-speed networks to low-speed networks faces many challenges from application perspective, such as abrupt bandwidth variation, packet loss, round trip time variation, connection disruption, and transmission blackout. Existing inter-RAT handover solutions cannot solve all the problems at the same time. Based on the high-layer convergence sublayer design, a new receiver-aided soft inter-RAT handover is proposed. This soft handover scheme takes advantage of multihoming ability of multi-mode mobile station (MS) to smooth handover procedure. In addition, handover procedure is seamless and applicable to frequent handover scenarios. The simulation results conducted in UMTS-WiMAX converged network scenario show that: in case of TCP traffics for handover from WiMAX to UMTS, not only handover latency and packet loss are eliminated completely, but also abrupt bandwidth/wireless RTT variation is smoothed. These delightful features make this soft handover scheme be a reasonable candidate of mobility management for future mobile converged networks.