• Title/Summary/Keyword: Small catchment

Search Result 122, Processing Time 0.022 seconds

Estimating Temporal and Spatial Variation of Sediment Transport Processes using a Distributed Catchment Model (분포형 유역모델을 이용한 유사 운반과정의 시·공간적 변동 해석)

  • Koo, Bhon K.;Cho, Jae-Heon
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.6
    • /
    • pp.872-880
    • /
    • 2007
  • For effective management of sediment-related diffuse pollution, it is of utmost importance to estimate spatial variation of sediment transport processes within a catchment. A mathematical model can play a critical role in estimating sediment transport processes at the catchment scale provided that the model structure is appropriate for representing major sediment transport processes of the catchment of interest. This paper introduces a distributed catchment model River Basin Water Quality Simulator (RBWQS) and presents some results of its application to a small rural catchment in Korea. The model has been calibrated and validated for a wet period using hourly hydrographs and sediment concentrations observed at the catchment outlet. Based on the model simulation results, the spatial variation of sediment transport processes across the catchment and the effects of paddy fields and small reservoirs on hydrology and sediment transport have been analyzed at the catchment scale.

Urban Hydrologic Monitoring due to Internet Hydrologic Monitoring System (인터넷 수문관측시스템을 이용한 도시수문 모니터링)

  • Seo, Kyu Woo;Kim, Nam Gil;Na, Hyun Woo;Lee, In Rock
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.1321-1325
    • /
    • 2004
  • The continuous monitoring of the runoff in the small-scaled urban watershed and easily accessible experiment catchment is necessary to investigate the overall status of the development in the urban catchment and the varying aspects of the discharge characteristics due to the urbanization. However, the research on the management and the characteristics of the small-scaled model basin for discharge tests has not been actively performed up to now. This study selects the Dong-Eui university basin, which locates at Gaya-dong in Busan, as the experiment catchment to monitor the discharge rate in the urban watershed. EMS(DEMS, DATA-PCS EMS, mini rain gage & AWS(AWS-DEU, DATA-PCS AWS) monitoring system installed for the collection of hydrological data such as the rainfall and the waterlevel. This experiment catchment is the typical urban catchment and is under development, and it is possible to analyze the varying aspects of the discharge rate during and after the development.

  • PDF

Analysis of Temporal and Spatial Variations of Channel-Aquifer Interaction Using a Distributed Catchment Model: A Case Study for the Tarland Burn Catchment in the UK (분포형 유역 모델을 이용한 하천-지하수 상호작용의 시공간적 변동 해석: 영국 Tarland Burn 유역에 대한 사례 연구)

  • Koo, Bhon-Kyoung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.253-257
    • /
    • 2007
  • Channel-aquifer interaction is one of the key hydrological processes that determine water flows in the stream/river channel. Field measurements of channel-aquifer interaction, however, is very difficult and costly, particularly when one intends to understand its variations across a catchment for a long period. Hydrological simulations using a catchment model are a relatively easier and cheaper alternative provided the model structure is appropriate for describing channel-aquifer interaction. In this study, a catchment model called CAMEL (Chemicals from Agricultural Management and Erosion Losses) is used for estimating channel-aquifer interaction over time and space. CAMEL is a distributed catchment model to simulate transformation and transport processes of sediment and pollutants as well as water flows at the catchment scale. In the model, a catchment is represented using a network of square columns each of which is comprised of various storages of water. CAMEL explicitly simulates both surface and subsurface processes including channel-aquifer interaction. This paper presents an application study results of CAMEL for the Tarland Burn Catchment, a small (catchment area $52\;km^2$) rural catchment in Scotland, UK, demonstrating some of the channel-aquifer interaction dynamics across the catchment during a 2-year period.

  • PDF

Assessment of Small Mountainous Catchment Runoff at Yongdam-dam Guryang (산지 소규모 유역의 유출 특성 평가-용담 구량천)

  • Kim, Seong-Goo;Chang, Hyung-Joon;Lee, Hyo-Sang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.4
    • /
    • pp.633-641
    • /
    • 2018
  • The risk of disasters, such as floods and drought, has increased. Reliable hydrological data is important for analyzing the water resource and designing hydraulic structure to manage these risks. The Yongdam Guryang river catchment located in the central of Korea is the research catchment of K-water and UNESCO IHP, and the hydrological data, such as rainfall, runoff, evapotranspiration, etc. has been observed at the catchment. The aim of this study was to assess the runoff characteristics of the small mountainous catchment of Korea based on the observed hydrological data, and the Probability Distributed Model was applied as the Rainfall-Runoff Model at the Yongdam Guryang river catchment. The hydrological data was divided into the wet period from June to September and dry period from October to May according to data analysis. The runoff ratio was 0.27~0.41 in the wet period and 0.30~0.45 in the dry period. The calibration result by the Probability Distributed Model showed a difference in the calibrated model parameters according to the periods. In addition, the model simulated the runoff accurately except for the dry period of 2015, and the result revealed the applicability of the PDM. This study showed the runoff characteristics of the small mountainous catchment by dividing the hydrological data into dry and wet periods.

Forecasting of Pollution Inflow of the Small Channel Catchment (소하천 유역에서의 오염 유입량 예측)

  • Kim, Dong-Phil;Jeon, Min-Woo;Yim, Dong-Hee
    • Journal of Environmental Science International
    • /
    • v.17 no.4
    • /
    • pp.451-459
    • /
    • 2008
  • This study was carried out forecasting of pollution inflow of the Small Mountainous Catchment, namely; Seolma-cheon experimental catchment. Pollutographs of DO, BOD, T-N, Conductivity, T-p, pH. COD, SS from this catchment were obtained from in-situ data of total ten events using QUAL2E-PULS model. From the analysis results, between up stream(Sabang-bridge) and down stream (Memorial-bridge, outlet) obtained relation formula of water quality component. Determination coefficient of relation formula, Conductivity, COD, BOD, DO, pH, T-N, T-P, and SS showed high relation of $0.87{\sim}0.99$. The increases of DO, BOD, COD, and pH concentration of Memorial-bridge were associated with pollution inflow by road building far 2.25km from Sabang-bridge to down stream. The analysis results of QUAL2E-PULS simulation and up/down stream relation formula, pollution amounts of DO, BOD, COD and pH increased at Memorial-bridge and pollution source site. Therefore, pollution inflow can be forecasted exactly by up/down stream relation formula at pollution source site.

Application of Surface Runoff-River flow Model to Small- and Large-Size Catchment Areas (소유역 및 대유역 홍수유출모형의 적용)

  • Yoo, Dong-Hoon
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.1
    • /
    • pp.87-104
    • /
    • 2003
  • A numerical model of surface runoff and river flow has been applied to small- and large-size catchment areas in order to investigate the physical characteristics of river flow during flood period. Several refinements are made on the existing model SIRG-RS for the ways of rainfall input through surface runoff, river junction treatment and the computation of river flow on steep slope. For the computation of frictional forces, employed is the power law of friction factor which is a function of Reynolds number and relative roughness height. The empirical equation of friction factor is developed using recent field data as well as laboratory data. The refined model has been applied to small-size catchment area as well as large-size catchment area, and the computation results are found in good agreement with the observations in both cases.

The Analysis of Critical Duration of uncontrolled single detention facility in Small Catchment (소규모 유역에서 자연방류형 단일저류지의 임계지속기간 분석)

  • Park, Jong-Young;Shin, Chang-Dong;Lee, Jung-Sik
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.5 no.2 s.17
    • /
    • pp.17-28
    • /
    • 2005
  • The objective of this study is to evaluate the critical duration between detention facility and flood control facility of small size catchment. 4 small size catchments are applied for hydrological analysis and rainfall excess is computed by using the NRCS Runoff Curve Number method. The critical duration of detention facility and flood control facility is evaluated using the concept of allowable release rate. The conclusions studied in this study are as follows; (1) The type of temporal pattern of design rainfall which causes maximum storage ratio has resulted in Huff's 2 quartile in case of the use of the concept of allowable release rate. (2) Based on (1) of conclusion, the critical durations of flood control facility are similar to those of detention facility, which is used for uncontrolled single detention pond.

Curve Number for a Small Forested Mountainous Catchment (산지 소유역 유출곡선지수)

  • Oh, Kyoung-Doo;Jun, Byong-Ho;Han, Hyung-Geun;Jung, Sung-Won;Cho, Young-Ho;Park, Soo-Yun
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.8 s.157
    • /
    • pp.605-616
    • /
    • 2005
  • In this paper, runoff curve numbers (CN's) for a small forested mountainous catchment are estimated using rainfall-runoff data measured at Sulma experimental catchment every 10 minutes and a new guideline for applying the antecedent rainfall conditions (ARC's) for small mountainous watersheds in Korea is proposed. Sulma experimental catchment is a typical natural mountainous basin with $97\%$ of forested land cover and CN's are estimated to be in the range between 51 and 89 with median value of 72. The test hypothesis stating as 1-day ARC is better than 5-day ARC in determining CN's for a small mountainous watershed is shown to be acceptable. Also, linear regression equations for the estimation of CN's for small mountainous catchments are proposed. As there is no significant investigations available on CN's for small mountainous catchments, the newly proposed relationships between CN's and ARC may be used as a preliminary guideline to assign CN's for the estimation of floods from rainfall data on mountainous regions.

Assessment of Water Balance Considering Runoff Characteristics in the Mountainous Area of Pyosun Catchment in Jeju Island (유출특성을 고려한 산지지역의 물수지 평가 - 제주도 표선유역을 중심으로 -)

  • Song, Sung-Ho;An, Jung-Gi;Lee, Gyu-Sang
    • Journal of Environmental Science International
    • /
    • v.24 no.4
    • /
    • pp.505-514
    • /
    • 2015
  • The grid-based water balance of watershed scale was assessed in the mountainous area of Pyosun catchment in Jeju Island after analyzing precipitation, evapotranspiration, and runoff from January 2008 to December 2013. The existing results of direct runoff, evapotranspirtion, and groundwater recharge comparing to precipitation were presented 22.0%, 25.6%, and 52.4%, respectively, in Pyosun catchment. However, this study indicated each component shows 14.5%, 24.2%, and 61.0%, respectively, in the mountainous area of Pyosun catchment. Therefore, groundwater recharge rate in the mountainous area appears higher than 10% comparing to the overall catchment. It would be analyzed that the amount of direct runoff is relatively small. Moreover, this difference could be generated because of the spatial discontinuities in the process of estimating the total amount of precipitation in the mountainous area. Therefore, the grid-based spatial analysis to maximize the spatial continuity would be useful for providing a more reasonable result when the total amount of water resources are evaluated in mountainous areas in the future.

Application and Comparison of GeoWEPP model and USLE model to Natural Small Catchment - A Case Study in Danwol-dong, Icheon-si (소유역에서의 토사유출 산정을 위한 GeoWEPP model과 USLE의 비교.적용 연구 - 이천시 단월동 유역을 사례로)

  • Kim, Min-Seok;Kim, Jin-Kwan;Yang, Dong-Yoon
    • Economic and Environmental Geology
    • /
    • v.40 no.1 s.182
    • /
    • pp.103-113
    • /
    • 2007
  • The empirical USLE and the physically-based GeoWEPP which were distributed model linked with GIS (Geographical Information System) were applied to small natural catchment located in Icheon-si, Gyeonggi-do, South Korea. The results using by two models were total sediment yield from study catchment between January, 2004 and January, 2005. During the study period, the observed total sediment yield was 270.54 ton and the total sediment yield computed by USLE and GeoWEPP model were 358.1 ton and 283.30 ton, respectively. Each of results computed by USLE and GeoWEPP overestimated more than the observed total sediment yield, but, based on the results, the total sediment yield computed by GeoWEPP approximated to the observed result. We suggest that the reason why the total sediment yield using by models overestimated was that computed amounts by two models did not contain the amount of suspended sediment flowed over the weir.