• Title/Summary/Keyword: Small areas

Search Result 2,696, Processing Time 0.03 seconds

A Study on the Structural Reinforcement of the Modified Caisson Floating Dock (개조된 케이슨 플로팅 도크의 구조 보강에 대한 연구)

  • Kim, Hong-Jo;Seo, Kwang-Cheol;Park, Joo-Shin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.1
    • /
    • pp.172-178
    • /
    • 2021
  • In the ship repair market, interest in maintenance and repair is steadily increasing due to the reinforcement of prevention of environmental pollution caused by ships and the reinforcement of safety standards for ship structures. By reflecting this effect, the number of requests for repairs by foreign shipping companies increases to repair shipbuilders in the Southwest Sea. However, because most of the repair shipbuilders in the southwestern area are small and medium-sized companies, it is difficult to lead to the integrated synergy effect of the repair shipbuilding companies. Moreover, the infrastructure is not integrated; hence, using the infrastructure jointly is a challenge, which acts as an obstacle to the activation of the repair shipbuilding industry. Floating docks are indispensable to operating the repair shipbuilding business; in addition, most of them are operated through renovation/repair after importing aging caisson docks from overseas. However, their service life is more than 30 years; additionally, there is no structure inspection standard. Therefore, it is vulnerable to the safety field. In this study, the finite element analysis program of ANSYS was used to evaluate the structural safety of the modified caisson dock and obtain additional structural reinforcement schemes to solve the derived problems. For the floating docks, there are classification regulations; however, concerning structural strength, the regulations are insufficient, and the applicability is inferior. These insufficient evaluation areas were supplemented through a detailed structural FE-analysis. The reinforcement plan was decided by reinforcing the pontoon deck and reinforcement of the side tank, considering the characteristics of the repair shipyard condition. The final plan was selected to reinforce the side wing tank through the structural analysis of the decision; in addition, the actual structure was fabricated to reflect the reinforcement plan. Our results can be used as reference data for improving the structural strength of similar facilities; we believe that the optimal solution can be found quickly if this method is used during renovation/repair.

Seasonal Changes in the Absorption of Particulate Matter and the Fine Structure of Street Trees in the Southern Areas, Korea: With a Reference to Quercus myrsinifolia, Quercus glauca, Quercus salicina, Camellia japonica, and Prunus × yedoensis (한국 남부지역 가로수종 잎 미세구조와 미세먼지 흡착량의 계절 변화: 가시나무, 종가시나무, 참가시나무, 동백나무, 왕벚나무 중심으로)

  • Jin, Eon-Ju;Yoon, Jun-Hyuck;Choi, Myung Suk;Sung, Chang-Hyun
    • Journal of Korean Society of Forest Science
    • /
    • v.110 no.2
    • /
    • pp.129-140
    • /
    • 2021
  • The study investigates the correlation between the seasonal changes in the absorption of fine dusts and the fine structure of surface on each type of street tree, such as Quercus myrsinifolia, Quercus glauca, Quercus salicina, Camellia japonica, and Prunus × yedoensis in the southernareas of Korea. The absorption ranges of fine dust were 31.51~110.44 ㎍/cm2 in January, 23.20~79.30 ㎍/cm2 in November, 22.68~76.90 ㎍/cm2 in May, and 9.88~49.91 ㎍/cm2 in August. The absorption value was about 54.4% higher in January than in May. With the grooves and hairs on the leaf surface and lots of wax, Q. salicina seems related to the high absorption rate of fine dust for each fine dust particle size. The one with gloss and smooth leaf surface has a low amount of wax. C. japonica Prunus × yedoensisshowed a low absorption rate of fine dust in each season. Whereas the increase in porosity density, length, and leaf area size can be related to the reduced PM and increasedabsorption rate, the leaf surface roughness, total wax amount, and porosity width can be related to the increase in the PM absorption rate. There was also a high correlation between the total wax amount and absorption rate of the leaf surface at the size of PM0.2 than PM10 and PM2.5. These results imply that the quantitative and qualitative trais of leaf, such as wax amounts and leaf surface,can increase the absorption of fine dusts, and the small-sized particles seem to be highly adsorbed with the high wax amounts.

Analysis of the effect of long-term water supply improvement by the installation of sand dams in water scarce areas (물부족 지역에서 샌드댐 설치에 의한 장기 물공급 개선 효과 분석)

  • Chung, Il-Moon;Lee, Jeongwoo;Lee, Jeong Eun;Kim, Il-Hwan
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.12
    • /
    • pp.999-1009
    • /
    • 2022
  • The Chuncheon Mullori area is an underprivileged area for water welfare that does not have a local water supply system. Here, water is supplied to the village by using a small-scale water supply facility that uses underground water and underground water as the source. To solve the problem of water shortage during drought and to prepare for the increasing water demand, a sand dam was installed near the valley river, and this facility has been operating since May 2022. In this study, in order to evaluate the reliability of water supply when a sand dam is assumed during a drought in the past, groundwater runoff simulation results using MODFLOW were used to generate inflow data from 2011 to 2020, an unmeasured period. After performing SWAT-K basin hydrologic modeling for the watershed upstream of the existing water intake source and the sand dam, the groundwater runoff was calculated, and the relative ratio of the monthly groundwater runoff for the previous 10 years to the monthly groundwater runoff in 2021 was obtained. By applying this ratio to the 2021 inflow time series data, historical inflow data from 2011 to 2020 were generated. As a result of analyzing the availability of water supply during extreme drought in the past for three cases of demand 20 m3/day, 50 m3/day, and 100 m3/day, it can be confirmed that the reliability of water supply increases with the installation of sand dams. In the case of 100 m3/day, it was analyzed that the reliability exceeded 90% only when the existing water intake source and the sand dam were operated in conjunction. All three operating conditions were evaluated to satisfy 50 m3/day or more of demand based on 95% reliability of water supply and 30 m3/day or more of demand based on 99% of reliability.

Characteristics of Sea Exchange in Gwangyang Bay and Jinju Bay considering Freshwater from Rivers (하천유출수를 고려한 광양만과 진주만의 해수교환 특성)

  • Hong, Doung;Kim, Jongkyu;Kwak, Inn-Sil
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.2
    • /
    • pp.201-211
    • /
    • 2022
  • At the center of the Noryang waterway, the Gwangyang bay area (including the Yeosu Strait) is located at the west, and the Jinju bay area (including Gangjin bay and Sacheon bay) is located at the east. Freshwater from several rivers is flowing into the study area. In particula,r the event of flood, great quantities freshwater flow from Seomjingang (Seomjin river) into the Gwangyang bay area and from Gahwacheon (discharge from Namgang Dam) into the Jinju bay. The Gwangyang and Jinju bay are connected to the Noryang waterway. In addition, freshwater from Seomjingang and Gahwacheon also affect through the Noryang waterway. In this study, we elucidated the characteristics of the tidal exchange rate and residence time for dry season and flood season on 50 frequency, considering freshwater from 51 rivers, including Seomjingang and Gahwacheon, using a particle tracking method. We conducted additional experiments to determine the effect of freshwater from Seomjingang and Gahwacheon during flooding. In both the dry season and flood season, the result showed that the particles released from the Gwangyang bay moved to the Jinju bay through the Noryang waterway. However, comparatively small amount of particles moved from the Jinju bay to the Gwangyang bay. Each experimental case, the sea exchange rate was 44.40~67.21% in the Gwangyang bay and 50.37~73.10% in the Jinju bay, and the average residence time was 7.07~15.36days in the Gwangyang bay and 6.45~12.75days in the Jinju bay. Consequently the sea exchange rate increased and the residence time decreased during flooding. A calculation of cross-section water flux over 30 days for 7 internal and 5 external areas, indicated that the main essential flow direction of the water flux was the river outflow water from Seomjingang flow through the Yeosu strait to the outer sea and from Gahwacheon flow through Sacheon bay, Jinju bay and the Daebang waterway to the outer sea.

Analysis of Plants Social Network for Vegetation Management on Taejongdae in Busan Metropolitan City (부산 태종대 식생관리를 위한 식물사회네트워크 분석)

  • Sang-Cheol Lee;Hyun-Mi Kang;Seok-Gon Park;Jae-Bong Baek;Chan-Yeol Yu;In-Chun Hwang;Song-Hyun Choi
    • Korean Journal of Environment and Ecology
    • /
    • v.36 no.6
    • /
    • pp.651-661
    • /
    • 2022
  • Plants social network analysis, which combines plants society and social network analyses, is a new research method for understanding plants society. This study was conducted to investigate the relationship between species, using plant social network analysis targeting Taejongdae in Busan, and build basic data for management. Taejongdae, located in the warm temperate forest in Korea, is a representative coastal forest of Busan Metropolitan City, and the Pinus thunbergii-Eurya japonicacommunity is widely distributed. This study set up 100 quadrats (size of 100m2each) in Taejongdae to investigate the species that emerged and analyzed the interspecies association focusing on major species. Based on the results, a sociogram was created using the Gephi 0.9.2, and the network centrality and structure were analyzed. The results showed that the frequency of appearance was high in the order of P. thunbergii, E. japonica, Quercus serrata, Sorbus alnifolia, Ligustrum japonicum, and Styrax japonicusand that many evergreen broad-leaved trees appeared due to the environmental characteristics of the site. The plants social network of Taejongdae was composed of a small-scale network with 50 nodes and 172 links and was divided into 4 groups through modularization. The succession sere identified through a sociogram confirmed that the group that include P. thunbergiiand E. japonicawould progress to a deciduous broadleaf community dominated by Q. serrataand Carpinus tschonoskii, using hub nodes such as Prunus serrulataf. spontaneaand Toxicodendron trichocarpum. Another succession sere was highly likely to progress to an evergreen broad-leaved community dominated by Machilus thunbergiiand Neolitsea sericea, using M. thunbergiias a medium. In some areas, a transition to a deciduous broad-leaved community dominated by Celtis sinensis, Q. variabilisand Zelkova serratausing Lindera obtusilobaand C. sinensisas hub nodes was expected.

Production and Quality Parameters of Oat Grown in Conventional/Organic Farming

  • Petr Konvalina;Ivana Capouchova
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.19-19
    • /
    • 2022
  • Hulled and naked oat is a perspective crop for the low input production systems due to its low requirements for soil quality and nutrition. Oats have good competitive ability against weeds and can provide appropriate yield in organic farming in comparison with other cereal species such as wheat or barley. It is a perspective crop from the point of view of use in the food industry too. The aim of our study was to compare the production and quality parameters of naked and hulled oat grown in both organic (OF) and conventional fields (CF). Small plot trials were conducted in two locations in the Czech Republic (České Budějovice, Prague) for four years (2018-2021) in two production systems (OF, and CF). We used four varieties of hulled oat (Korok, Kertag, Raven, Seldon) and one variety of naked oat (Patrik). During the vegetation, agronomically important data were recorded. After harvest samples were processed in the laboratory and analyzed selected quality parameters of grain dry matter (the protein content was determined by the Kjeldahl method, starch content in grain according to Ewers, fat content in grain dry matter by the modified method according to Soxhlet, and ash content in grain dry matter). The data were evaluated using the program STATISTICA version 13.2, StatSoft, Inc., California, USA. It is clear from the results that the number of panicles before the harvest was influenced by the location, cultivation system, year, and, to a lesser extent, the influence of the variety. The number of panicles in OF averaged 340 per square meter, which was 90% of the value of CF. For thousand grain weight (TGW), a significantly predominant effect of year was found. The independent effect of location on TGW was statistically not significant. Grain yield was predominantly influenced by cultivation system and location. In OF, it reached an average of 3.97 t.ha-1, which was 75% of the yield of CF. As part of the evaluation of the basic grain quality indicators, the content of protein, starch, fat, and ash in the dry matter of the grain was evaluated. The content of protein in the dry matter of the grain was predominantly influenced by year, followed by the influence of the variety and a fairly comparable influence of the cultivation system and locality. On average, it achieved 16.05% in OF and 17.01% in CF. The starch content was then related to the protein content, where as a result of the lower protein content in the grain of OF oats, the content of starch and fat was on the contrary increased. The year turned out to be the most significant factor, affecting both the starch content in the dry matter of the grain and the fat content. This was followed again by a fairly comparable influence on the cultivation system and locality. The influence of the cultivation system and location was not statistically significantly applied in the case of ash content in dry matter. Based on our results we can propose both types of oat (hulled and naked) as perspective crops for OF. An organic farmer can expect to achieve stable yields which, in less favorable conditions for the production of cereals in the OF, may be close to the level of conventional yields. In the future, it will be important to change agrotechnology in OF and increase oat yield because this crop has a good potential to grow in areas with low nitrogen input or less fertile soil.

  • PDF

A Study on the Development of Ultra-precision Small Angle Spindle for Curved Processing of Special Shape Pocket in the Fourth Industrial Revolution of Machine Tools (공작기계의 4차 산업혁명에서 특수한 형상 포켓 곡면가공을 위한 초정밀 소형 앵글 스핀들 개발에 관한 연구)

  • Lee Ji Woong
    • Journal of Practical Engineering Education
    • /
    • v.15 no.1
    • /
    • pp.119-126
    • /
    • 2023
  • Today, in order to improve fuel efficiency and dynamic behavior of automobiles, an era of light weight and simplification of automobile parts is being formed. In order to simplify and design and manufacture the shape of the product, various components are integrated. For example, in order to commercialize three products into one product, product processing is occurring to a very narrow area. In the case of existing parts, precision die casting or casting production is used for processing convenience, and the multi-piece method requires a lot of processes and reduces the precision and strength of the parts. It is very advantageous to manufacture integrally to simplify the processing air and secure the strength of the parts, but if a deep and narrow pocket part needs to be processed, it cannot be processed with the equipment's own spindle. To solve a problem, research on cutting processing is being actively conducted, and multi-axis composite processing technology not only solves this problem. It has many advantages, such as being able to cut into composite shapes that have been difficult to flexibly cut through various processes with one machine tool so far. However, the reality is that expensive equipment increases manufacturing costs and lacks engineers who can operate the machine. In the five-axis cutting processing machine, when producing products with deep and narrow sections, the cycle time increases in product production due to the indirectness of tools, and many problems occur in processing. Therefore, dedicated machine tools and multi-axis composite machines should be used. Alternatively, an angle spindle may be used as a special tool capable of multi-axis composite machining of five or more axes in a three-axis machining center. Various and continuous studies are needed in areas such as processing vibration absorption, low heat generation and operational stability, excellent dimensional stability, and strength securing by using the angle spindle.

Identifying sources of heavy metal contamination in stream sediments using machine learning classifiers (기계학습 분류모델을 이용한 하천퇴적물의 중금속 오염원 식별)

  • Min Jeong Ban;Sangwook Shin;Dong Hoon Lee;Jeong-Gyu Kim;Hosik Lee;Young Kim;Jeong-Hun Park;ShunHwa Lee;Seon-Young Kim;Joo-Hyon Kang
    • Journal of Wetlands Research
    • /
    • v.25 no.4
    • /
    • pp.306-314
    • /
    • 2023
  • Stream sediments are an important component of water quality management because they are receptors of various pollutants such as heavy metals and organic matters emitted from upland sources and can be secondary pollution sources, adversely affecting water environment. To effectively manage the stream sediments, identification of primary sources of sediment contamination and source-associated control strategies will be required. We evaluated the performance of machine learning models in identifying primary sources of sediment contamination based on the physico-chemical properties of stream sediments. A total of 356 stream sediment data sets of 18 quality parameters including 10 heavy metal species(Cd, Cu, Pb, Ni, As, Zn, Cr, Hg, Li, and Al), 3 soil parameters(clay, silt, and sand fractions), and 5 water quality parameters(water content, loss on ignition, total organic carbon, total nitrogen, and total phosphorous) were collected near abandoned metal mines and industrial complexes across the four major river basins in Korea. Two machine learning algorithms, linear discriminant analysis (LDA) and support vector machine (SVM) classifiers were used to classify the sediments into four cases of different combinations of the sampling period and locations (i.e., mine in dry season, mine in wet season, industrial complex in dry season, and industrial complex in wet season). Both models showed good performance in the classification, with SVM outperformed LDA; the accuracy values of LDA and SVM were 79.5% and 88.1%, respectively. An SVM ensemble model was used for multi-label classification of the multiple contamination sources inlcuding landuses in the upland areas within 1 km radius from the sampling sites. The results showed that the multi-label classifier was comparable performance with sinlgle-label SVM in classifying mines and industrial complexes, but was less accurate in classifying dominant land uses (50~60%). The poor performance of the multi-label SVM is likely due to the overfitting caused by small data sets compared to the complexity of the model. A larger data set might increase the performance of the machine learning models in identifying contamination sources.

Convergence of Remote Sensing and Digital Geospatial Information for Monitoring Unmeasured Reservoirs (미계측 저수지 수체 모니터링을 위한 원격탐사 및 디지털 공간정보 융합)

  • Hee-Jin Lee;Chanyang Sur;Jeongho Cho;Won-Ho Nam
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_4
    • /
    • pp.1135-1144
    • /
    • 2023
  • Many agricultural reservoirs in South Korea, constructed before 1970, have become aging facilities. The majority of small-scale reservoirs lack measurement systems to ascertain basic specifications and water levels, classifying them as unmeasured reservoirs. Furthermore, continuous sedimentation within the reservoirs and industrial development-induced water quality deterioration lead to reduced water supply capacity and changes in reservoir morphology. This study utilized Light Detection And Ranging (LiDAR) sensors, which provide elevation information and allow for the characterization of surface features, to construct high-resolution Digital Surface Model (DSM) and Digital Elevation Model (DEM) data of reservoir facilities. Additionally, bathymetric measurements based on multibeam echosounders were conducted to propose an updated approach for determining reservoir capacity. Drone-based LiDAR was employed to generate DSM and DEM data with a spatial resolution of 50 cm, enabling the display of elevations of hydraulic structures, such as embankments, spillways, and intake channels. Furthermore, using drone-based hyperspectral imagery, Normalized Difference Vegetation Index (NDVI) and Normalized Difference Water Index (NDWI) were calculated to detect water bodies and verify differences from existing reservoir boundaries. The constructed high-resolution DEM data were integrated with bathymetric measurements to create underwater contour maps, which were used to generate a Triangulated Irregular Network (TIN). The TIN was utilized to calculate the inundation area and volume of the reservoir, yielding results highly consistent with basic specifications. Considering areas that were not surveyed due to underwater vegetation, it is anticipated that this data will be valuable for future updates of reservoir capacity information.

Assessment of Eutrophication Using Trophic State Index and Water Quality Characteristics of Saemangeum Lake (새만금호의 수질 특성 및 영양상태지수를 이용한 부영양화 평가)

  • Jong Gu Kim
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.6
    • /
    • pp.587-597
    • /
    • 2023
  • We evaluated the eutrophication of Saemangeum Lake, which causes abnormal growth of algae, using the Carlson index. Eutrophication characteristics of Saemangeum Lake were analyzed. For the study, water quality surveys were conducted at 7 stations in Saemangeum Lake every month in 2021. The concentration of Chl.a was slightly higher in the Mankyeong water system in winter, and slightly higher in the Dongjin water system in spring and summer, but overall, except for some periods, the concentration was similar to or lower than the lake water quality environmental standard of class 3. COD showed water quality similar to or above the lake quality environmental standard of grade 4 in both the Mankyeong and Dongjin water systems in the summer and Autumn. TOC concentrations were within lake water quality standard 3 at all sites. Total phosphorus concentrations exceeded the lake water quality standard of Class 4 and were higher in January and August after rainfall. In the correlation analysis between water quality factors, the correlation of organic matter, total phosphorus, and total nitrogen to salinity was relatively high. This reflected the water quality characteristics of freshwater, brackish water, and seawater areas due to seawater inflow through the drainage gate and freshwater inflow through upstream rivers. According to the characteristics of eutrophication fluctuations in Saemangeum Lake by trophic state index, the indices of Chl.a, SD, and TN showed water quality in the early stage of eutrophication, while the TP index showed a severe eutrophication state. The magnitude of the eutrophication index among water quality components was TSI(TP) > TSI(TN) > TSI(SD) > TSI(CHL) in all water systems. Quadrant analysis of the deviation of TSI(CHL) from TSI(TP) and TSI(SD) on a two-dimensional plane showed that there was no limiting effect of total phosphorus on algal growth in all water systems. In addition, the factors af ecting light attenuation appeared to be dominated by small particulate matter from outside sources.