DOI QR코드

DOI QR Code

Seasonal Changes in the Absorption of Particulate Matter and the Fine Structure of Street Trees in the Southern Areas, Korea: With a Reference to Quercus myrsinifolia, Quercus glauca, Quercus salicina, Camellia japonica, and Prunus × yedoensis

한국 남부지역 가로수종 잎 미세구조와 미세먼지 흡착량의 계절 변화: 가시나무, 종가시나무, 참가시나무, 동백나무, 왕벚나무 중심으로

  • Jin, Eon-Ju (Forest Biomaterials Research Center, National Institute of Forest Science) ;
  • Yoon, Jun-Hyuck (Forest Biomaterials Research Center, National Institute of Forest Science) ;
  • Choi, Myung Suk (Division of Environmental Forest Science & Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Sung, Chang-Hyun (Forest Biomaterials Research Center, National Institute of Forest Science)
  • 진언주 (국립산림과학원 산림바이오소재연구소) ;
  • 윤준혁 (국립산림과학원 산림바이오소재연구소) ;
  • 최명석 (경상대학교 환경산림과학부) ;
  • 성창현 (국립산림과학원 산림바이오소재연구소)
  • Received : 2021.02.23
  • Accepted : 2021.05.10
  • Published : 2021.06.30

Abstract

The study investigates the correlation between the seasonal changes in the absorption of fine dusts and the fine structure of surface on each type of street tree, such as Quercus myrsinifolia, Quercus glauca, Quercus salicina, Camellia japonica, and Prunus × yedoensis in the southernareas of Korea. The absorption ranges of fine dust were 31.51~110.44 ㎍/cm2 in January, 23.20~79.30 ㎍/cm2 in November, 22.68~76.90 ㎍/cm2 in May, and 9.88~49.91 ㎍/cm2 in August. The absorption value was about 54.4% higher in January than in May. With the grooves and hairs on the leaf surface and lots of wax, Q. salicina seems related to the high absorption rate of fine dust for each fine dust particle size. The one with gloss and smooth leaf surface has a low amount of wax. C. japonica Prunus × yedoensisshowed a low absorption rate of fine dust in each season. Whereas the increase in porosity density, length, and leaf area size can be related to the reduced PM and increasedabsorption rate, the leaf surface roughness, total wax amount, and porosity width can be related to the increase in the PM absorption rate. There was also a high correlation between the total wax amount and absorption rate of the leaf surface at the size of PM0.2 than PM10 and PM2.5. These results imply that the quantitative and qualitative trais of leaf, such as wax amounts and leaf surface,can increase the absorption of fine dusts, and the small-sized particles seem to be highly adsorbed with the high wax amounts.

본 연구는 한국 남부지역의 주요 조경수 가시나무(Quercus myrsinifolia), 종가시나무(Quercus glauca), 참가시나무(Quercus salicina), 동백나무(Camellia japonica), 왕벚나무(Prunus × yedoensis) 등 5수종을 대상으로 계절별 미세먼지 흡착량 및 수종별 잎 표면 미세구조와의 관계를 연구하였다. 계절별 미세먼지 흡착량 범위는 1월(31.51~110.44 ㎍/cm2), 11월 (23.20~79.30 ㎍/cm2), 5월(22.68~76.90 ㎍/cm2), 8월(9.88~49.91 ㎍/cm2) 순으로, 8월보다 1월에 54.4% 더 높은 미세먼지 흡착량을 보였다. 잎 표면에 홈이 있고 털을 갖고 있으며, 왁스층 함량이 높은 Q. salicina는 미세먼지 입자 크기별 흡착량이 높게 유지되었으며, 광택이 있고 잎 표면이 매끄러우며, 왁스층 함량이 낮은 C. japonica와 Prunus × yedoensis는 계절별 미세먼지 흡착량이 낮았다. 엽면적 크기, 기공밀도 및 기공 길이의 증가는 PM 흡착량의 감소와 관련이 있고 반면, 잎 표피 거칠기, 왁스층 함량, 기공 폭의 증가는 PM 흡착량의 증가와 관련이 있었다. 또한, 잎 표면 왁스층 함량이 증가할수록 잎 표면 PM 흡착량도 증가하였으며, PM10, PM2.5 보다는 PM0.2와 관련이 높은 것으로 확인되었다. 또한, 앞으로 개별 수종에 대한 미세먼지 저감 효율을 정량적으로 판단할 수 있는 기준을 통한 저감 수종 선발과 더불어 미세먼지 저감을 위한 숲 조성 가이드라인 또한 제시되어야 할 것으로 판단된다.

Keywords

References

  1. Abhijith, K.V., Prashant Kumar., John Gallagher., Aonghus McNabola., Richard Baldauf., Francesco Pilla., Brian Broderick., Silvana Di Sabatino. and Beatrice Pulvirenti. 2017. Air pollution abatement performances of green infrastructure in open road and built-up street canyon environments - A review. Atmos. Environ 162: 71-86. https://doi.org/10.1016/j.atmosenv.2017.05.014
  2. Abbey, T. and Rathier, T. 2005. Effects of Mycorrhizal Fungi, Biostimulants and Water Absorbing Polymers on the Growth and Survival of Four Landscape Plant Species. Journal of Environmental Horticulture 23(2): 180-111.
  3. Bakker, M.I., Casado, B., Koerselman, J.W., Tolls, J. and Kolloffel, C. 2000. Polycyclic aromatic hydrocarbons in soil and plant samples from the vicinity of an oil refinery. Science of the Total Environment 263(1-3): 91-100. https://doi.org/10.1016/S0048-9697(00)00669-0
  4. Beckett, K.P., Freer-Smith, P.H. and Taylor, G. 2000. The Capture of Particulate Pollution by Trees at Five Contrasting Urban Sites. The International Journal of Urban Forestry 24(2-3): 209-230.
  5. Burkhardt, J. Hygroscopic particles on leaves: nutrients or desiccants?. 2010. Ecol Monogr 80: 369-399. https://doi.org/10.1890/09-1988.1
  6. Cavanagh, J-AE., Peyman, Z.R. and Wilson, J.G. 2009. Spatial attenuation of ambient particulate matter air pollution within an urbanised native forest patch. Urban Forestry & Urban Greening 8(1): 21-30. https://doi.org/10.1016/j.ufug.2008.10.002
  7. Cho, D.G. 2019. Prioritization of Species Selection Criteria for Urban Fine Dust Reduction Planting. Korean Journal of Environment and Ecology 33(4): 472-480. https://doi.org/10.13047/KJEE.2019.33.4.472
  8. Dzierzanowski, K. and Gawronski, S.W. 2011. Use of trees for reducing particulate matter pollution in air. Challenges of Modern Technology 2(1): 69-73.
  9. Dzierzanowski, K., Popek, R., Gawronska, H., Saebo, A.W. and Gawronski, S.W. 2011. Deposition of Particulate Matter of Different Size Fractions on Leaf Surfaces and in Waxes of Urban Forest Species. International Journal of Phytoremediation 13(10): 1037-1046. https://doi.org/10.1080/15226514.2011.552929
  10. Escobedo, F.J., Wagner, J.E., Nowak, D.J., Maza, Carmen Luz De la., Rodriguez, M., Daniel, E. and Crane, C. Analyzing the cost effectiveness of Santiago, Chile's policy of using urban forests to improve air quality. Journal of Environmental Management 86(1): 148-157. https://doi.org/10.1016/j.jenvman.2006.11.029
  11. Freer-Smith, P.H., El-Khatib, A.A. and Taylor, G. 2004. Capture of Particulate Pollution by Trees: A Comparison of Species Typical of Semi-Arid Areas (Ficus Nitida and Eucalyptus Globulus) with European and North American Species. Water, Air, and Soil Pollution 155; 173-187. https://doi.org/10.1023/B:WATE.0000026521.99552.fd
  12. Freer-Smith, P.H., Beckett, K.P., Taylor, G. 2005. Deposition velocities to Sorbus aria, Acer campestre, Populus deltoides × trichocarpa 'Beaupre', Pinus nigra and × Cupressocyparis leylandii for coarse, fine and ultra-fine particles in the urban environment. Environmental Pollution 133(1): 157-167. https://doi.org/10.1016/j.envpol.2004.03.031
  13. Gultz, P.G. 1994. Epicuticular leaf waxes in the evolution of the plant kingdom. J. Plant Physiol. 143, 453e464.
  14. Han, S.H. 2019. Fine Dust and Dementia: Is Ambient Air Pollution Associated with Cognitive Health. Journal of the Korean Neurological Association 37(2): 135-143. https://doi.org/10.17340/jkna.2019.2.3
  15. Han, D., Shen, H., Duan, W. and Chen, L. 2020. A review on particulate matter removal capacity by urban forests at different scales. Urban Forestry & Urban Greening 48: 126565. https://doi.org/10.1016/j.ufug.2019.126565
  16. Kardel, F., Wuyts, K., Maher, B.A., Hansard, R., Samson, R. 2011. Leaf saturation isothermal remanent magnetization (SIRM) as a proxy for particulate matter monitoring: Interspecies differences and in-season variation. Atmospheric Environment 45(29): 5164-5171. https://doi.org/10.1016/j.atmosenv.2011.06.025
  17. Kim, K.J., Chintakunta, S., Kim, J.C., Jeong, N.R., Han, S.W., Kim, W.Y., You, S. and Kim, C. Analysis of particulate matter(PM) reduction efficiency according to the content of wax layer in leaves of landscaping plants. Journal of Applied Biological Chemistry 63(2): 161-168. https://doi.org/10.3839/jabc.2020.022
  18. Kwon, S.J., Cha, S.J., Lee, J.K. and Park, J.H. 2020. Evaluation of accumulated particulate matter on roadside tree leaves and its metal content. Journal of Applied Biological Chemistry 63(2): 161-168. https://doi.org/10.3839/jabc.2020.022
  19. Lara-Lopez, M.A., Cepa, J., Bongiovanni, A., Perez Garcia, A.M., Ederoclite, A., Castaneda, H., Fernandez Lorenzo, M., Povic, M. and Sanchez-Portal, M. 2010. A fundamental plane for field star-forming galaxies. Astron. Astrophys 521: L53. https://doi.org/10.1051/0004-6361/201014803
  20. Leonard, R.J., McArthur, C. and Hochuli, D.F. 2016. Particulate matter deposition on roadside plants and the importance of leaf trait combinations. Urban Forestry & Urban Greening 20(1): 249-253. https://doi.org/10.1016/j.ufug.2016.09.008
  21. Liu, Y., Chien, W.M., Medvedev, I.O., Weldy, C.S., Luchtel, D.L., Rosenfeld, M.E. and Chain, M.T. 2013. Inhalation of diesel exhaust does not exacerbate cardiac hypertrophy or heart failure in two mouse models of cardiac hypertrophy. Part. Fibre Toxicol 10(1): 49. https://doi.org/10.1186/1743-8977-10-49
  22. Loomis, D., Yann, G., Lauby-Secretan, B., Ghissassi, F.E., Bouvard, V., Benbrahim-Tallaa, L., Guha, N., Baan, R., Mattock, H. and Straif, Kurt. 2013. The carcinogenicity of outdoor air pollution. The Lancet Oncology 14(13): 1262-1263. https://doi.org/10.1016/s1470-2045(13)70487-x
  23. Martins, C.M.C., Mesquita, S.M.M. and Vaz, W.L.C. 1999. Cuticular waxes of the Holm(Quercus ilex L. subsp. ballota (Desf.) Samp.) and Cork (Q. suber L.) Oaks. Phytochem Anal. 10, 1e5.
  24. McDonald, A.G., Bealey, W.J., Fowler D., Dragosits, U., Skiba, U., Smith, R.I., Donovan, R.G., Brett, H.E., Hewitt, C.N. and Nemitz, E. 2007. Quantifying the effect of urban tree planting on concentrations and depositions of PM10 in two UK conurbations. Atmospheric Environment 42(38): 8455-8467.
  25. McKinney, M.L. 2002. Urbanization, biodiversity, and conservation. Bioscience 52, 883e890. https://doi.org/10.1641/0006-3568(2002)052[0883:UBAC]2.0.CO;2
  26. Moreno, M.M., Azcarate, C. 2003. Concepciones Y Creencias De Los Profesores Universitarios De Matematicas Acerca De La Ense anza De Las Ecuaciones Diferenciales. Ense anza De Las Ciencias 21(2): 265-280.
  27. Mo, L,. Ma, Z,. Xu, Y,. Sun, F,. Lun, X,. Liu, X,. Chen, J. and Yu, X. 2015. Assessing the capacity of plant species to accumulate particulate matterin Beijing, China. PLoS One 10(10): e0140664 https://doi.org/10.1371/journal.pone.0140664
  28. Nawrot, T.S., Perez, L., Kunzli, N., Munters, E. and Nemery, B. 2011. Public health importance of triggers of myocardial infarction: a comparative risk assessment. The Lancet 377(9767): 732-740. https://doi.org/10.1016/S0140-6736(10)62296-9
  29. Neinhuis, C. and Barthlitt, W. 1997. Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202; 1-8. https://doi.org/10.1007/s004250050096
  30. Nowak, D.J. 1994. Chicago's Urban Forest Ecosystem: Resulting of the Chicago Urban Forest Climate Project Chapter 5 Air Pollution Removal by Chicago's Urban Forest.
  31. Park, S.M., Moon, K.J., Park, J.S., Kim, H.J., Ahn, J.Y. and Kim, J.S. 2012. Chemical Characteristics of Ambient Aerosol during Asian Dusts and High PM Episodes at Seoul Intensive Monitoring Site in 2009. Journal of Korean Society for Atmospheric Environment 28(3): 282-293. https://doi.org/10.5572/KOSAE.2012.28.3.282
  32. Popek, R., Gawronska, H., Wrochna, M., Gawronski, S.W. and Saebo, A. 2013. Particulate Matter on Foliage of 13 Woody Species: Deposition on Surfaces and Phytostabilisation in Waxes-a 3-Year Study. International Journal of Phytoremediation 15(3): 245-256. https://doi.org/10.1080/15226514.2012.694498
  33. Prajapati, S.K. and Tripathi, B.D. 2008. Seasonal Variation of Leaf Dust Accumulation and Pigment Content in Plant Species Exposed to Urban Particulates Pollution. Plant and Environment Interaction 37(3): 865-870.
  34. Saebo, A., Popek, R., Nawrot, B., Hanslin, H.M., Gawronska, H. and Gawronski, S.W. 2012. Plant species differences in particulate matter accumulation on leaf surfaces. Science of The Total Environment 427-428; 347-354. https://doi.org/10.1016/j.scitotenv.2012.03.084
  35. Sgrigna, G., Saebo, A., Gawronski, S., Popek, R. and Calfapietra, C. Particulate Matter deposition on Quercus ilex leaves in an industrial city of central Italy. Environmental Pollution 197: 187-194. https://doi.org/10.1016/j.envpol.2014.11.030
  36. Shahid, M., Dumat, C., Khalid, S., Schreck, E., Xiong, T. and Niazi, N.K. 2017. Foliar heavy metal uptake, toxicity and detoxification in plants: A comparison of foliar and root metal uptake. Journal of Hazardous Materials 325(5): 36-58. https://doi.org/10.1016/j.jhazmat.2016.11.063
  37. Shao, C., Meng, L., Wang, M., Cui, C., Wang, B., Han, C.R., Xu, F. and Yang, J. 2019. Mimicking Dynamic Adhesiveness and Strain-Stiffening Behavior of Biological Tissues in Tough and Self-Healable Cellulose Nanocomposite Hydrogels. ACS Applied Materials & Interfaces 11(6): 5885-5895. https://doi.org/10.1021/acsami.8b21588
  38. Shi, Z., Li, J., Huang, L., Wang, P., Wu, L., Ying, Q., Zhang, H., Lu, L., Liu, X., Liao, H. and Hu, J. 2017. Source apportionment of fine particulate matter in China in 2013 using a source-oriented chemical transport model. Science of the Total Environment 601-602; 1476-1487. https://doi.org/10.1016/j.scitotenv.2017.06.019
  39. Song, Y., Maher, B.A., Li, F., Wang, X., Sun, X. and Zhang, H. 2015. Particulate matter deposited on leaf of five evergreen species in Beijing, China: Source identification and size distribution. Atmospheric Environment 105: 53-60. https://doi.org/10.1016/j.atmosenv.2015.01.032
  40. Terzaghi, E., Wild, E., Zacchello, G., Bruno, E.L., Cerabolini., Jones, K.C. and Guardo, A.D. 2013. Forest Filter Effect: Role of leaves in capturing/releasing air particulate matter and its associated PAHs. Atmospheric Environment 74: 378-384. https://doi.org/10.1016/j.atmosenv.2013.04.013
  41. Thorpe, A. and Harrison, R.M. 2008. Sources and properties of non-exhaust particulate matter from road traffic: A review. Science of the Total Environment 400: 270-282. https://doi.org/10.1016/j.scitotenv.2008.06.007
  42. Urbat, M., Lehndorff, E. and Schwark, L. 2004. Biomonitoring of air quality in the Cologne conurbation using pine needles as a passive sampler-Part I : magneticproperties. Atmospheric Environment 38(23): 3781-3792. https://doi.org/10.1016/j.atmosenv.2004.03.061
  43. Wang, B. et al. 2013. Properties and inflammatory effects of various size fractions of ambient particulate matter from Beijing on A549 and J774A.1 cells. Environmental Science & Technology 47: 10583-10590. https://doi.org/10.1021/es401394g
  44. Wang, Y., Li, J., Jing, H., Zhang, Q., Jiang, J. and Biswas, P. 2015. Laboratory Evaluation and Calibration of Three Low-Cost Particle Sensors for Particulate Matter Measurement. Aerosol Science and Technology 49(11): 1063-1077. https://doi.org/10.1080/02786826.2015.1100710
  45. WANR. 2013. National Environment Policy Nairobi, Kenya: Ministry of Environment, Water and Natural Resources.
  46. WHO. Health aspects of air pollution with particulate matter, ozone and nitrogen dioxide. Report. 2003 on a WHO working group. Bonn; 2003. http://www.euro.who.int/_data/assets/pdf_file/0005/112199/E79097.pdf.
  47. Yang, J., McBride, J., Zhou, P., Zou, X., Che, S. and Wang, W. 2005. The urban forest in Beijing and its role in air pollution reduction. Urban Forestry & Urban Greening 3(2): 65-78. https://doi.org/10.1016/j.ufug.2004.09.001