• Title/Summary/Keyword: Small Wind Power Plant

Search Result 20, Processing Time 0.027 seconds

Power Network's Operation Influence Analysis of Wind Power Plant in Jeju island (제주지역 풍력발전기에 의한 전력계통운영 영향분석)

  • Kim, Young-Hwan;Choi, Byung-Chun;Jang, Si-Ho;Kim, Se-Ho;Jwa, Jong-Geun
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.127-129
    • /
    • 2005
  • Construction of wind power plant is increasing rapidly because Jeju island is known as the most suitable place for wind power plant. Rut wind power plant is difficult electric power control and it has a rapid electric power fluctuation. Such a problem has a bad influence on electric power network in small electric network like Jeju. Therefore, we forecast the amount of wind power plant construction by weather information and the rate of utilization for existing facility. We investigate the contribution degree for electric Power demand, economic effect, the case of power network influence. So we forecast influence of wind power plant for Jeju power network's operation in the near future.

  • PDF

Analysis of Response of a Wind Farm During Grid/inter-tie Fault Conditions (그리드/연계선 사고 시 풍력발전단지의 응동 분석)

  • Lee, Hye-Won;Kim, Yeon-Hee;Zheng, Tai-Ying;Lee, Sang-Cheol;Kang, Yong-Cheol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.6
    • /
    • pp.1128-1133
    • /
    • 2011
  • In a wind farm, a large number of small wind turbine generators (WTGs) operate whilst a small number of a large generator do in a conventional power plant. To maintain high quality and reliability of electrical energy, a wind farm should have equal performance to a thermal power plant in the transient state as well as in the steady state. The wind farm shows similar performance to the conventional power plant in the steady state due to the advanced control technologies. However, it shows quite different characteristics during fault conditions in a grid, which gives significant effects on the operation of a wind farm and the power system stability. This paper presents an analysis of response of a wind farm during grid fault conditions. During fault conditions, each WTG might produce different frequency components in the voltage. The different frequency components result in the non-fundamental frequencies in the voltage and the current of a wind farm, which is called by "beats". This phenomenon requires considerable changes of control technologies of a WTG to improve the characteristics in the transient state such as a fault ride-through requirement of a wind farm. Moreover, it may cause difficulties in protection relays of a wind farm. This paper analyzes the response of a wind farm for various fault conditions using a PSCAD/EMTDC simulator.

A Study of Wind-power Generations at the south-east coast of Ul-san (울산 남동부 해안지역에서의 소용량 풍력발전 가능성에 관한 연구)

  • Park, M.D.;Pack, M.S.;Lee, G.W.;Lee, Y.S.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.1392-1394
    • /
    • 2003
  • This paper presents the actual test data of 3 phase, 9 pole, 3.6 [kw] synchronized wind-power generator controlled by hinged vane system and the possibilities of the small mount wind-power generations at the south-east coast of Ul-san. It also shows the data of the wind-velocity acquired by wind-direction sensor, calculation and analysis of the estimated electrical generation power, energy storage systems, and the efficient usages of the wind-power system.

  • PDF

A Simple Prediction Model for PCC Voltage Variation Due to Active Power Fluctuation of a Grid Connected Wind Turbine

  • Kim, Sang-Jin;Seong, Se-Jin
    • Journal of Power Electronics
    • /
    • v.9 no.1
    • /
    • pp.85-92
    • /
    • 2009
  • This paper studies the method to predict voltage variation that can be presented in the case of operating a small-sized wind turbine in grid connection to the isolated small-sized power system. In order to do this, it makes up the simplified simulation model of the existing power plant connected to the isolated system, load, transformer, and wind turbine on the basis of PSCAD/EMTDC and compares them with the operating characteristics of the actual established wind turbine. In particular, it suggests a simplified model formed with equivalent impedance of the power system network including the load to analytically predict voltage variation at the connected point. It also confirms that the voltage variation amount calculated by the suggested method accords well with both simulation and actually measured data. The results can be utilized as a tool to ensure security and reliability in the stage of system design and preliminary investigation of a small-sized grid connected wind turbine.

Evaluation of the Wind Power Penetration Limit and Wind Energy Penetration in the Mongolian Central Power System

  • Ulam-Orgil, Ch.;Lee, Hye-Won;Kang, Yong-Cheol
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.6
    • /
    • pp.852-858
    • /
    • 2012
  • This paper describes evaluation results of the wind power penetration limit (WPPL) and the wind energy penetration (WEP) in the Mongolian central power system (MCPS). A wind power plant (WPP) in a power system possesses an output power limit because the power system must maintain a balance between the generation and consumption of electricity at all times in order to achieve an adequate level of quality. The instantaneous penetration limit (IPL) of wind generation at a load is determined as the minimum of the three technical constraints: the minimum output, the ramp rate capability, and the spinning reserve of the conventional generating units. In this paper, a WPPL is defined as the maximum IPL divided by the peak load. A maximal variation rate (VR) of wind power is a major factor in determining the IPL, WPPL, and WEP. This paper analyzes the effects of the maximal VR of wind power on the WPPL, WEP, and capacity factor (CF) in the MCPS. The results indicate that a small VR can facilitate a large amount of wind energy while maintaining a high CF with increased wind power penetration.

Research on Optimized Operating Systems for Implementing High-Efficiency Small Wind Power Plants (고효율 소형 풍력 발전소 구현을 위한 최적화 운영 체계 연구)

  • Young-Bu Kim;Jun-Mo Park
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.25 no.2
    • /
    • pp.94-99
    • /
    • 2024
  • Recently, wind power has been gaining attention as a highly efficient renewable energy source, leading to various technological developments worldwide. Typically, wind power is operated in the form of large wind farms with many wind turbines installed in areas rich in wind resources. However, in developing countries or regions isolated from the power grid, off-grid small wind power systems are emerging as an efficient solution. To efficiently operate and expand off-grid small-scale power systems, the development of real-time monitoring systems is required. For the efficient operation of small wind power systems, it is essential to develop real-time monitoring systems that can actively respond to excessive wind speeds and various environmental factors, as well as ensure the stable supply of produced power to small areas or facilities through an Energy Storage System (ESS). The implemented system monitors turbine RPM, power generation, brake operation, and more to create an optimal operating environment. The developed small wind power system can be utilized in remote road lighting, marine leisure facilities, mobile communication base stations, and other applications, contributing to the development of the RE100 industry ecosystem.

A Study on Output Increase of Small Hypro Power using Nature Energy (자연에너지를 이용한 소수력 출력증대 방안 연구)

  • Chae, Ji-Seog;Yoon, Lee-Soo;Kim, Tae-Ho;Kim, Young-Il;Ma, Bem-Gu;Choi, Jang-Kyu
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1129-1130
    • /
    • 2011
  • The output of small hydro power plant was generated less than rated output under high temperature. We Installed the artificial ventilation that blow cold wind from water supply pipe tunnel to small hydro power plant. The temperature of small hydro power has been decreased. The output of small hydro power plant has been increased from 405kW to 445kW.

  • PDF

Technical Problems and solution based on Connection of Ullung Wind Power Plant into Power Distribution System (울릉도 풍력발전 계통연계 문제점 및 대책)

  • Yoon, G.G.;Lee, W.S.;Kim, B.H.;Lee, S.K.
    • Proceedings of the KIEE Conference
    • /
    • 2001.10a
    • /
    • pp.305-307
    • /
    • 2001
  • The wind power equipment of Ullung island is composed of a hybride type of wind powers and diesel generators. The wind power generation in Ullung island is, howerever, not smooth due to the small capacity and weekness of existing power systems and line. Therefore, it is the purpose of this study to describe the technical problems and its solution through the investigation of actual conditions.

  • PDF

Effect Analysis on Self-supporting Energy of Newtown Sewage Treatment Facility for Low-carbon Green City (저탄소 녹색도시 조성을 위한 신도시 하수처리시설의 에너지 자립 효과 분석)

  • Ahn, Soo-Jeung;Hyun, Kyoung-Hak;Kim, Jong-Yeob;Choung, Youn-Kyoo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.6
    • /
    • pp.683-690
    • /
    • 2010
  • Renewable and unutilized energy (biogas power generation, wind power, solar, small hydro-power, sewage heat source, etc.) seems to be suitable to install for the sewage treatment facilities. There are 357 sewage treatment plants in 2007. 17 plants among these have been operating for self-supporting energy by using solar power, small hydro-power and biogas in 2008. Newly built sewage treatment plant of 96,000 $m^3$/day for a newtown is expected to get up to energy consumption of 10 GWh/yr. If solar energy, small hydro-power and biogas-equipments were applied to the new treatment plant, self-supporting energy of the new sewage treatment plant will get up to 56.1%. As a results, about 2,379ton $CO_2$/yr $CO_2$ emission reduction can be expected by using renewable energy. These efforts for self-supporting energy will lead sewage treatment plant to new energy recycle center.

Dynamic Droop-based Inertial Control of a Wind Power Plant

  • Hwang, Min;Chun, Yeong-Han;Park, Jung-Wook;Kang, Yong Cheol
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.1363-1369
    • /
    • 2015
  • The frequency of a power system should be maintained within the allowed limits for stable operation. When a disturbance such as generator tripping occurs in a power system, the frequency is recovered to the nominal value through the inertial, primary, and secondary responses of the operating synchronous generators (SGs). However, for a power system with high wind penetration, the system inertia will decrease significantly because wind generators (WGs) are operating decoupled from the power system. This paper proposes a dynamic droop-based inertial control for a WG. The proposed inertial control determines the dynamic droop depending on the rate of change of frequency (ROCOF). At the initial period of a disturbance, where the ROCOF is large, the droop is set to be small to release a large amount of the kinetic energy (KE) and thus the frequency nadir can be increased significantly. However, as times goes on, the ROCOF will decrease and thus the droop is set to be large to prevent over-deceleration of the rotor speed of a WG. The performance of the proposed inertial control was investigated in a model system, which includes a 200 MW wind power plant (WPP) and five SGs using an EMTP-RV simulator. The test results indicate that the proposed scheme improves the frequency nadir significantly by releasing a large amount of the KE during the initial period of a disturbance.