• 제목/요약/키워드: Small Surface Crack

검색결과 170건 처리시간 0.026초

소변형 이론에 입각한 감육이 존재하는 90 도 곡관의 소성 한계 하중 (II)- 굽힘 - (Plastic Limit Loads of 90° Elbows with Local Wall-Thinning Using Small Strain FE Limit Analyses (II)- Bending Moment -)

  • 김종현;안중혁;홍석표;박치용;김윤재
    • 대한기계학회논문집A
    • /
    • 제31권4호
    • /
    • pp.496-505
    • /
    • 2007
  • This paper proposes closed-form plastic limit load solutions for elbows under in-plane bending, via three-dimensional (3-D), small strain FE limit analyses using elastic-perfectly plastic materials. A wide range of elbow and thinning geometries are considered. For systematic analyses of the effect of the axial thinning length on limit loads, two limiting cases are considered; a sufficiently long wall thinning, and the circumferential part-through surface crack. Closed-form plastic limit load solutions for wall thinning with intermediate longitudinal extents are then obtained from these two limiting cases. The effect of the axial extent of wall thinning on plastic limit loads for elbows is highlighted by comparing that for straight pipes. Although the proposed solutions are developed for the case when wall thinning exists in the center of elbows, it is also shown that they can be applied to the case when wall thinning exists anywhere within the elbow.

분자동력학을 이용한 공구형상에 따른 미소절삭현상에 관한 연구 (A Study on the Microcutting for Configuration of Tools using Molecular Dynamics)

  • 뮨찬홍;김정두
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1993년도 추계학술대회 논문집
    • /
    • pp.83-88
    • /
    • 1993
  • Recently, the analysis of microcutting with submicrometer depth of cut is tried to get a more high quality surface product, but to get a valuable result another method instead of conventional finite element method must be considered because finite elment method is impossible for a very small focused region and mesh size. As the altermative method, Molecular Dynamics or Statics is suggested and acceoted in the field of microcutting, indentation and crack propagation. In this paper using Molecuar Dynamics simulation, the phenomena of microcutting with subnanometer chip thickness is studied and the cutting mechanism for tool edge configuration is evaluated. As the result of simulation the atomistic chip formation is achieved.

  • PDF

용접부 중앙에 균열이 존재하는 인장 평판에 대한 한계하중 해석 (Limit load analyses of weld-center cracked plates under tension)

  • 송태광;김윤재;김종성;진태은
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.1830-1835
    • /
    • 2007
  • In the present work, the effect of strength mismatch on plastic limit loads is quantified for strength-mismatched plates with constant-depth surface cracks under tension, via three-dimensional, small strain elastic-perfectly plastic finite element analyses. Relevant variables related to plate and crack geometries are systematically varied, in addition to the weld width. An important finding is that a parameter related to the weld width-to-ligament ratio is proposed, based on which limit loads can be uniquely quantified. The proposed limit load solutions is a valuable input to estimate nonlinear fracture mechanics parameters based on the reference stress approach.

  • PDF

특수 가공된 셀룰로오스섬유보강 콘크리트의 초기 특성 (Properties of Specialty Cellulose Fiber Reinforced Concrete at Early Ages)

  • 원종필;박찬기
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 봄 학술발표회 논문집(I)
    • /
    • pp.349-354
    • /
    • 1999
  • Specialty cellulose fibers processed for the reinforcement of concrete offer relatively high levels of elastic modulus and bond strength. The hydrophilic surfaces of specialty cellulose fibers facilitate their dispersion and bonding in concrete. Specialty cellulose fibers have small effective diameters which are comparable to the cement particle size, and thus promote close packing and development of dense bulk and interface microstructure in the matrix. The relatively high surface area and the close spacing of specialty cellulose fibers when combined with their desirable mechanical characteristic make them quite effective in the suppression and stabilization of microcracks in the concrete matrix. The properties of fresh mixed specialty cellulose fiber reinforced concrete and the contribution of specialty cellulose fiber to the restrained shrinkage crack reduction potential of cement composites at early age and theirs evaluation are presented in this paper. Results indicated that specialty cellulose fiber reinforcement showed an ability to reduce the total area significantly (as compared to plain concrete and polypropylene fiber reinforced concrete.

  • PDF

섬유보강 규산칼슘수화물 경화체의 미세조직과 기계적 특성 (The Microstructure and Mechanical Properties of Fiber Reinforced Calcium Silicate Hydrates)

  • 엄태선;최상흘
    • 한국세라믹학회지
    • /
    • 제34권5호
    • /
    • pp.491-499
    • /
    • 1997
  • High flexible lightweight composites containing tobermorite as a main mineral is produced using various amorphous silicates, lime, cement and fibers. Here, Mechanical properties of the composites were studied by observing microstructures of hydrates and fibers. Amorphous silicates having better hydraulicity retarded the crystallization of tobermorite due to better formation of C-S-H gel in water bath curing, but, difficult conversion from C-S-H gel to tobermorite in hydrothermal reaction. In the low molar ratio of CaO/SiO2 (0.67), faster crystalization was observed dued to more impurities such as Al2O3 alkali, resulting in improving mechanical properties due to small crystal size and many contact points. It was identified that a lot of calcium silicate hydates formed at surface of pulps increase bonding strength and the crack-resistance of matrix in the composites, but decrease hardness and compressive strength. The choice of amorpous silicates having better hydraulicity, low CaO/SiO2 adding each fibers bellow about 5% in the raw mixs and lower molding pressure should be needed at improve mechanical properties of composites.

  • PDF

자기손상을 스스로 나타내는 콘크리트 개발 (Development of Self-Diagnosis Concrete for Damage)

  • 윤요현;김이성;김화중
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.161-166
    • /
    • 2003
  • The purpose Performance degradation of concrete structures is generally caused by the deteriorations, such as surface collapse, pop-out, crack, and so on. It may result in serious defects of the concrete structures. Thus it is very important to detect and repair the defects of concrete structures within a proper time to assure the structural safety. However, the defects due to the deteriorations are usually difficult to find by visual inspection. A sensor is developed in this study, which may give early indications for degradation of concrete structures and show the locations of the demage. Cracks can be defected by the liquid in a small glass capsules which are embedded in the concrete structures. This paper discusses the applicability of that was developed smart concrete.

  • PDF

Fretting Wear Mechanisms of Zircaloy-4 and Inconel 600 Contact in Air

  • Kim, Tae-Hyung;Kim, Seock-Sam
    • Journal of Mechanical Science and Technology
    • /
    • 제15권9호
    • /
    • pp.1274-1280
    • /
    • 2001
  • The fretting wear behavior of the contact between Zircaloy-4 tube and Inconel 600, which are used as the fuel rod cladding and grid, respectively, in PWR nuclear power plants was investigated in air. In the study, number of cycles, slip amplitude and normal load were selected as the main factors of fretting wear. The results indicated that wear increased with load, slip amplitude and number of cycles but was affected mainly by the slip amplitude. SEM micrographs revealed the characteristics of fretting wear features on the surface of the specimens such as stick, partial slip and gross slip which depended on the slip amplitude. It was found that fretting wear was caused by the crack generation along the stick-slip boundaries due to the accumulation of plastic flow at small slip amplitudes and by abrasive wear in the entire contact area at high slip amplitudes.

  • PDF

800℃ 조건에서의 시멘트 경화체의 균열 특성 (Cracking Behavior of Cement and Concrete Damaged by High Temperature of 800℃)

  • 지우람;박지웅;신기돈;이건철
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2017년도 춘계 학술논문 발표대회
    • /
    • pp.26-27
    • /
    • 2017
  • In this study, the cracking characteristics of cured pastes at 800℃ were investigated by X-ray CT. The test specimens were fabricated with and without aggregate, and the heating rate condition was applied at rapid heating (10.0℃/min). It is considered that the rapid heating condition does not cause a temperature gradient phenomenon because the temperature difference between the surface and the center of the sample is small due to a low heating rate unlike an actual fire. The cracking condition of the specimens without aggregate was more severe than that of specimens with aggregate.

  • PDF

Fatigue damage detection of CFRP using the electrical resistance change method

  • Todoroki, Akira;Mizutani, Yoshihiro;Suzuki, Yoshiro;Haruyama, Daichi
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제14권4호
    • /
    • pp.350-355
    • /
    • 2013
  • Electrical resistance change measurements were performed, to detect fatigue damage of a quasi-isotropic CFRP and cross-ply CFRP laminates. A four-probe method was used to measure the exact electrical resistance change. A three-probe method was used to measure the electrical contact resistance change, during long cyclic loading. The specimen side surface was observed using a video-microscope to detect damage. The measured electrical resistance changes were compared with the observed damage. The results of this study show that the electrical resistance increase of the quasi-isotropic laminate was caused by a delamination crack between ${\pm}45^{\circ}$ plies. Matrix cracking caused a small electrical resistance increase of the cross-ply laminate, but the decreased electrical resistance caused by the shear-plastic deformation impedes matrix-cracking detection.

가압열충격을 고려한 원자로 압력용기의 파괴역학적 해석 (Fracture Mechanics Analysis of a Reactor Pressure Vessel Considering Pressurized Thermal Shock)

  • 박재학;박상윤
    • 한국안전학회지
    • /
    • 제16권4호
    • /
    • pp.29-38
    • /
    • 2001
  • The purpose of this paper is to evaluate the structural integrity of a reactor pressure vessel subjected to the pressurized thermal shock(PTS) during the transient events, such as main steam line break(MSLB) and small break loss of coolant accident(SBLOCA). For postulated surface or subsurface cracks, variation curves of stress intensity factor are obtained by using the three different methods, including ASME section XI code anlysis, the finite element alternating method and the finite element method. From the stress intensity factor curves, the maximum allowable nil-ductility transition temperatures(RT/NDT/) are determined by the tangent criterion and the maximum criterion for various crack configurations and two initial transient events. As a result of the analysis, it is noted that axial cracks have smaller maximum allowable RT$_{NDT}$ values than same-sized circumferential cracks for both the transient events in the case of the tangent criterion. Axial cracks have smaller RT$_{NDT}$ values than same-sized circumferential cracks for MSLB and circumferential cracks have smaller values than axial cracks for SBLOCA in the case of the maximum criterion.

  • PDF