• Title/Summary/Keyword: Small Greenhouse

Search Result 228, Processing Time 0.029 seconds

Development of the Smallest, High-accuracy NDIR Methane Sensor Module to Detect Low Concentration (저 농도 감지를 위한 NDIR 방식의 초소형 고정도 메탄센서 모듈)

  • Kim, Dong-Hwan;Lee, Ihn;Bang, Il-Soon;Chun, Dong-Gi;Kim, Il-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.199-203
    • /
    • 2018
  • In this study, we develop a methane sensor module that can detect low concentrations below 5,000 ppm and measure up to the detection limit of 50 ppm with the NDIR method, with a long lifetime and high accuracy. Methane ($CH_4$) is one of a representative greenhouse gas, which is very explosive. Thus, it is important to quickly and accurately measure methane concentration in the air. To adjust the methane sensor for industrial field applications, a NDIR-based small sensor was implemented and characterized, where its volume was $4cm{\times}4cm{\times}2cm$ and its response time ($T_{90}$) was less than 30 sec. These results demonstrate that the proposed sensor is commercially available for low-concentration measurement, low volume, and fast response application, such as IoT sensor nodes and portable devices.

Cultural conditions affect somatic embryogenesis in Catharanthus roseus L. (G.) Don

  • Aslam, Junaid;Mujib, A.;Fatima, Samar;Sharma, M.P.
    • Plant Biotechnology Reports
    • /
    • v.2 no.3
    • /
    • pp.179-189
    • /
    • 2008
  • We established an efficient plant regeneration system for Catharanthus roseus L. (G.) Don through somatic embryogenesis. Embryogenic callus was induced from hypocotyl of seed germinated in vitro. Somatic embryogenesis in Catharanthus has been categorized into three distinct stages: (1) initiation and proliferation of embryo; (2) maturation, and; (3) germination or plantlet conversion. Beside plant growth regulators, various stages of embryogenesis were screened for their response to a wide variety of factors (pH, gelrite, light, sugar alcohols, polyethyleneglycol and amino acids), which affect embryogenesis. All of the tested factors had a small to marked influence on embryogeny and eventual conversion to plantlets. The plantlets were acclimatized successfully in a greenhouse. To our knowledge, this is the first report describing a detailed study of various cultural factors which regulate embryogenesis in C. roseus. The results discussed in this paper may be used in mass propagation to produce medicinal raw material, and the embryo precursor cells could be used in genetic modification programmes that aim to improve the alkaloid yield as well.

A Study on the Appropriate Size of Large Rainwater Utilizing Facilities and Estimation of Agricultural Water Availability in Namwon eup, Jeju Island (제주도 남원읍지역 대용량 빗물이용시설의 적정규모 및 농업용수 공급 가능량 산정 연구)

  • Kim, Minchul;Park, Wonbae;Kang, Bongrae
    • Journal of Soil and Groundwater Environment
    • /
    • v.25 no.1
    • /
    • pp.84-94
    • /
    • 2020
  • Jeju Island is seeking reliable ways to secure alternative water resources using rainwater in order to conserve and manage its groundwater as sustainable water resources. The purpose of this study is to investigate the rainwater storage capability of small-size storage facilities installed at farmhouses in Uigwi and Wimi of Namwon-eup region. The rainwater outflows from the storage facilities in rain events were analyzed. The appropriate size of rainwater utilizing facilities are suggested to be about 5,800 ㎥ in Uigwi area and 4,900 ㎥ in Wimi area based on the calculation from the rainfall frequency and runoff amounts. If those facilities are put into operation in Uigwi and Wimi area, it is estimated approximately 32.3 and 11.5% of total agricultural water can be supplied by the facilities. Wimi area showed low rainwater usage because of less number of facilities relative to the size of farm areas and less intensive underground water usage. It is analyzed that more than 55% of agricultural water can be supplied by rainwater if 70 facilities without the rainwater facilities are connected to the rainwater utilizing facilities.

Renewable energy deployment policy-instruments for Cameroon: Implications on energy security, climate change mitigation and sustainable development

  • Enow-Arrey, Frankline
    • Bulletin of the Korea Photovoltaic Society
    • /
    • v.6 no.1
    • /
    • pp.56-68
    • /
    • 2020
  • Cameroon is a lower middle-income country with a population of 25.87 million inhabitants distributed over a surface area of 475,442 ㎢. Cameroon has very rich potentials in renewable energy resources such as solar energy, wind energy, small hydropower, geothermal energy and biomass. However, renewable energy constitutes less than 0.1% of energy mix of the country. The energy generation mix of Cameroon is dominated by large hydropower and thermal power. Cameroon ratified the Paris Agreement in July 2016 with an ambitious 20% greenhouse gas (GHG) emission reduction. This study attempts to investigate some renewable energy deployment policy-instruments that could enable the country enhance renewable energy deployment, gain energy independence, fulfill Nationally Determined Contribution (NDC) and achieve Sustainable Development Goals. It begins with an analysis of the status of energy sector in Cameroon. It further highlights the importance of renewable energy in mitigating climate change by decarbonizing the energy mix of the country to fulfill NDC and SDGs. Moreover, this study proposes some renewable energy deployment policy-solutions to the government. Solar energy is the most feasible renewable energy source in Cameroon. Feed-in Tariffs (FiT), is the best renewable energy support policy for Cameroon. Finally, this study concludes with some recommendations such as the necessity of building an Energy Storage System as well a renewable energy information and statistics infrastructure.

A Study on the Practical Use of Alternative Energy for Agriculture in Korea (우리나라 농업의 대체에너지 활동 실태에 관한 연구)

  • 홍지형
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.35 no.3
    • /
    • pp.81-90
    • /
    • 1993
  • Groundwater and animal wastes are typical example which are underutilized resources than their value in agriculture. This paper was to investigate the actual patterns of utilization of water curtain for greenhouses and methane gas utilization from swine wastes in a view point of promoting more efficient use of alternative energy. The results from measurements can be summarized as follows : 1.It was estimated that the maximum heating load per l0a was around 23,2804/hr and the heating load at January showed 3.93X 1064 respectively for strawberry greenhouses with insulation by the water curtain. 2.The average heating cost of the greenhouse with water curtain system amounted to about 75,000 Won per l0a. This result suggested that the greater cultivated area provides less heating cost. 3.The operating volume was about 73 percent of the optimum size of the digester. The net available methane gas rates of the produced gas remained close to 62 percent, But the conventional and small size of the digester was maintained at a lower level of around 20 to 29 percent. 4.It appeared that major problems of biogas production system were required to maintain the temperature of the fermentation above ambient temperature and the optimum volume of digester.

  • PDF

LAND FARMING OF WATER PLANT ALUM SLUDGE ON ACID MINERAL SOIL AFFECTED BY ACID WATER

  • Lee, Seung-Sin;Kim, Jae-Gon;Moon, Hi-Soo;Kang, Il-Mo
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.04a
    • /
    • pp.182-186
    • /
    • 2001
  • An acid forest surface soil as a land farming medium was treated with a water plant alum sludge at 0 to 18%. Indian mustard was grown in the treated soil in a greenhouse for 5 weeks and watered with pH 4 tap water adjusted with a mixed acid (1HNO$_3$: 2H$_2$SO$_4$) during plant growth. Changes in soil property, leachate chemistry, plant growth, and plant uptake of elements by the sludge treatment were determined. The alum sludge treatment increased buffer capacity to acidity, hydraulic conductivity, water holding capacity, and phosphate adsorption of the soil and decreased bulk density and mobility of small particles. The sludge treatment reduced leaching of Al, Mg, K, Na, and root elongation. Plant did uptake less amount of the cations and P but more Ca with the sludge treatment.

  • PDF

Hull Form Development of 5,000TEU Class Container Carrier considering the Operation Profile (Operation Profile을 고려한 5,000TEU급 컨테이너선 선형개발)

  • Kim, Jin-Woo;Park, Sung-Woo;Lee, Pyung-Kuk;Lee, Wang-Soo;Sun, Jae-Ouk
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2017.10a
    • /
    • pp.59-62
    • /
    • 2017
  • Recently oil price has got lower, but energy efficiency has been considered as an important factor to minimize ship operational costs and reduce greenhouse gas emissions. For the reason, it is necessary that energy efficiency improvement for hull form design and operational performance reflect an understanding of the vessel's operational profile. Throughout the life of the vessel, this can lead to important economies of fuel, even if, in some cases, a small penalty can be taken for design condition. In the present paper, hull form was developed for 5,000TEU class container carrier at given operation profile. As a CFD result at several design point, optimized hull form has improved resistance performance in comparison with the basis hull form. To reducing the viscosity and the wave resistance at multi draft and multi speed, the hull form was investigated for Cp-curve, frame and local shape. Numerical study has been performed using WAVIS & Star-CCM+ and verified by model test in the towing tank.

  • PDF

Toxic Effects of Serpentine Soils on Plant Growth

  • Kim, Jeong-Myeong;Shim, Jae-Kuk
    • Journal of Ecology and Environment
    • /
    • v.31 no.4
    • /
    • pp.327-331
    • /
    • 2008
  • Serpentine soils are distributed in a small area in Korea, and generally exhibit high contents of Ni, Cr, Fe, Mn, Co and Mg. We investigated the growth of woody plants and herbs in the Andong serpentine area, Korea. Pinus densiflora and P. rigida growing on serpentine soils have high contents of Fe, Mg, Ni and Co, with contents approximately twice as high as those of non-serpentine plants. Tree species on serpentine soil also had lower ratios of tree height/DBH than trees in a control area. In greenhouse culture experiments on two bodenvag herb species, Setaria viridis and Cymbopogon tortilis, the biomass of the plants was significantly affected by soil type but not by seed origins. After 66 days, the growth of S. viridis and C. tortilis seedlings was significantly inhibited in serpentine soil, and the dry weight of each species showed significant negative correlations with soil heavy metal contents (Ni, Co and Cr). These results suggest that the growth of plants was inhibited by properties of the serpentine soil, and in particular, their high heavy metal concentration, which induced dwarfing in woody plants and reduction of total plant biomass in herbs.

Effect of Carbon Dioxide-reduced Cement on Properties of Lightweight-foamed Concrete (이산화탄소 저감형 시멘트 함량에 따른 경량기포 콘크리트의 물성평가)

  • Im, Donghyeok;Lee, Won-Ki
    • Journal of Environmental Science International
    • /
    • v.29 no.6
    • /
    • pp.605-612
    • /
    • 2020
  • To improve the initial strength and stability of lightweight-foamed concrete, which shows suitable sound absorption and insulation characteristics, the effect of CO2-reduced cement on the properties of the concrete was investigated. Various mixing ratios were applied by substituting a certain amount of slag and Calcium Sulfo Aluminate (CSA) in CO2-reduced Ordinary Portland Cement (OPC) and the physical properties of the samples were examined using the Korean Standard. The kiln temperatures of the CSA were 100-200℃ ; these values are lower than those of OPC and can lead to energy saving. In addition, the low limestone content reduces greenhouse gas emissions by 20 %. Adding a small amount of CSA in OPC content activates Ca-Al-H2-based hydrates, and the initial compressive strength of the concrete is improved. As the CSA content increased, the thermal conductivity of the concrete decreased by up to 8% compared to plain concrete, thus indicating an improvement in its insulation. Therefore, the settlement stability was improved as the addition of CSA shortened the setting time.

Feasibility Study on Introduction of Decentralized Water Supply System for Improving Water Security and Sustainability (물안보 및 지속가능성 제고를 위한 분산형 용수공급시스템의 도입 타당성에 관한 연구)

  • Kim, Kwan-Yeop;Kim, Seong-Su;Park, No-Suk
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.1
    • /
    • pp.111-124
    • /
    • 2014
  • Decentralized water supply systems, treating the water in users'vicinity, cutting down the distribution system, utilizing the alternative water resources(rainwater harvesting, water reclamation and reuse and so on.) and saving energy and other resources, could be categorized into POU(Point-Of-Use), POE(Point-Of-Entry) and community small scale system. From the literature review, we could thought that decentralized water supply system and hybrid system(integrating centralized and decentralized water supply system within urban water management) might have strengthening comparative advantages to centralized system with respect to: (1) water security, (2) sustainability, (3) economical affordability. Even though it is difficult to derive and quantify direct benefit advantages from decentralized and hybrid system in comparison with centralized system, (1) operational cost reduction, (2) assurance for safe and stability water supply and (3) greenhouse gas reduction can be expected from successful establishment of the former.