• Title/Summary/Keyword: Small Greenhouse

Search Result 228, Processing Time 0.033 seconds

Roof Ventilation Structures and Ridge Vent Effect for Single Span Greenhouses of Arch Shape (아치형 단동온실의 지붕환기구조 및 천창효과)

  • Nam, Sang-Woon
    • Korean Journal of Agricultural Science
    • /
    • v.28 no.2
    • /
    • pp.99-107
    • /
    • 2001
  • It is difficult to install a ventilation window on the roof of single span greenhouses of arch shape. Investigation on the roof ventilation structures for those greenhouses was conducted. In small greenhouses with spans of 5 to 8 m, circular or chimney type ridge vents made of plastic were employed. In large greenhouses with spans of 12 to 18 m, even span roll-up ridge vents made of steel pipe were employed. The effect of roof ventilation was evaluated by comparative experiments between greenhouse installing ridge vents and having controlled side vents only. Roof ventilation contributed greatly to restraint of temperature rise and maintenance of uniform temperature distribution in greenhouses. And ventilation efficiency was analyzed by experiments on the opening and closing operation of the ridge and side vent. There were no temperature differences according to opening and closing sequence of ventilation window. But for greenhouse temperature control by ventilation, it is desirable to open side vents after ridge vents and to close ridge vents after side vents.

  • PDF

The Study of KOGAS DME Process in Small and Medium Sized Gas Field Containing $CO_2$ ($CO_2$가 함유된 중소규모 가스전을 위한 KOGAS DME Process 연구)

  • Mo, Yong-Gi;Cho, Won-Jun;Song, Taek-Yong;Baek, Young-Soon
    • Journal of the Korean Institute of Gas
    • /
    • v.14 no.4
    • /
    • pp.51-55
    • /
    • 2010
  • The global activities to reduce the $CO_2$ emission as a greenhouse gas have been various efforts. Under this circumstance, small and medium sized gas field containing $CO_2$ to develop as LNG is not economic feasibility. Particularly, for the separation of $CO_2$ in gas field, separation facilities should be installed to add. This is and increase in plant construction cost and separated $CO_2$ emission into the atmosphere is not the result of greenhouse gas reduction. When the uneconomic gas field apply the KOGAS DME process, the gas field containing $CO_2$ can be increase economic feasibility because of natural gas and $CO_2$ can be use to resource gas. The Tri-reformer produced syngas as H2 and CO in KOGAS DME process and the resource gases are natural gas, steam, oxygen and $CO_2$. The $CO_2$ is used as raw material gases from recover $CO_2$ in DME process. In this study, we investigated range of application of $CO_2$ in gas field.

Effect of External Light Environment and Growing Degree Days on Strawberry Production (외부 광환경 및 생육도일온도가 딸기 생산량에 미치는 영향)

  • Lee, Taeseok;Kim, Jingu;Park, Seokho;Lee, Jaehan;Han, Kilsu;Moon, Jongpil
    • Journal of Bio-Environment Control
    • /
    • v.31 no.4
    • /
    • pp.432-437
    • /
    • 2022
  • In this study, strawberries were grown during the two cultivation periods (first: 2020-2021, second: 2021-2022) to analyze the effect of the external light environment and growing degree days (GDD) on crop production. The temperature and humidity during day in a greenhouse in each cultivation period were similarly managed. At night, there was a statistical difference in temperature and humidity in the greenhouse between two periods. The accumulated solar radiation during the first cultivation period was high in September and October. Since January, the accumulated solar radiation during the second cultivation period was high. In the second cultivation period, the initial yield was small because the accumulated solar radiation and GDD was small. But accumulated yields and potential maximum yields in second cultivation period were larger than yields in the first cultivation period as the accumulated solar radiation and GDD increased. The sugar contents of strawberry decreased as GDD increased.

Study for Investments Flow Patterns in New-Product Development (신제품개발시 소요투자비 흐름의 기업특성별 연구)

  • Oh, Nakkyo;Park, Wonkoo
    • Korean small business review
    • /
    • v.40 no.3
    • /
    • pp.1-24
    • /
    • 2018
  • The purpose of this study is verifying with corporate financial data that the required investment amount flow shows a similar pattern as times passed, in new product development by start-up company. In the previous paper, the same authors proposed the required investment amount flow as a 'New Product Investment Curve (NPIC)'. In this study, we have studied further in various types of companies. The samples used are accounting data of 462 companies selected from 5,873 Korean companies which were finished external audit in 2015. The results of this study are as follows; The average investment period was 3 years for the listed companies, while 6 years for the unlisted companies. The investment payback period was 6 years for listed companies, while 17 years for unlisted companies. The investment payback period of the company supported by big affiliate company (We call 'greenhouse company') was 14~15 years, while 17 years for real venture companies. When we divide all companies into 4 groups in terms of R&D cost and variable cost ratio, NPIC explanatory power of 'high R&D and high variable cost ratio group (Automobile Assembly Business) is best. Among the eight investment cost indexes proposed to estimate the investment amount, the 'cash 1' (operating cash flow+fixed asset excluding land & building+intangible asset, deferred asset change)/year-end total assets) turned out to be the most effective index to estimate the investment flow patterns. The conclusion is that NPIC explanatory power is somewhat reduced when we estimate all companies together. However, if we estimate the sample companies by characteristics such as listed, unlisted, greenhouse, and venture company, the proposed NPIC was verified to be effective by showing the required investment amount pattern.

Analysis on Importance of Information Security Factors for Smart Work using AHP -Based on the Mobile Office for Small Businesses- (AHP를 활용한 스마트워크 정보보호 요소의 중요도 분석 -중소기업의 모바일 오피스를 중심으로-)

  • Kang, Kyung-Hoon;Lim, Chae-Hong;Lim, Jong-In;Park, Tae-Hyoung
    • Journal of Digital Convergence
    • /
    • v.11 no.3
    • /
    • pp.415-426
    • /
    • 2013
  • Smart work has recently introduced as a way to solve problems such as greenhouse gas emissions, low birth rate and aging as well as to improve productivity. Because of development of ICT infrastructure and the proliferation of smart devices, the mobile office has the most commonly used within types of smart work in Korea. But the adoption of the mobile office in small businesses is only half of that of large corporations. The security issue appears to be one of the biggest obstacles to the introduction of smart work in small businesses. Therefore, the purpose of this study is to analyze the information security factors that should be considered when the mobile office is introduced to small businesses. By analyzing the previous studies, the information security factors of the mobile office are classified 5 groups composed of 24 factors. 5 groups are terminals, applications and platforms, networks, servers and users. According to the survey result using AHP, 'User' was drawn to the most important group, and 'Data Encryption', 'Wireless LAN Control' and 'Terminal Recovery When Leaving' were drawn to the important information security factors of the mobile office among 24 factors.

Study on Energy Independence Plan and Economic Effects for Sewage Treatment Plant (하수처리시설의 에너지자립화 및 경제적 효과분석)

  • Park, Kihak;Lee, Hosik;Ha, Junsu;Kim, Keugtae;Lim, Chaeseung
    • Journal of Korean Society on Water Environment
    • /
    • v.37 no.2
    • /
    • pp.128-136
    • /
    • 2021
  • It is generally known that a wastewater treatment plant (WWTP) consumes immense energy even if it can produce energy. With an aim to increase the energy independence rate of WWTP from 3.5% in 2010 to 50% in 2030, the Korean government has invested enormous research funds. In this study, cost-effective operating alternatives were investigated by analyzing the energy efficiency and economic feasibility for biogas and power generation using new and renewable energy. Based on the US EPA Energy Conservation Measures and Korea ESCO projects, energy production and independence rate were also analyzed. The main energy consumption equipment in WWTP is the blower for aeration, discharge pump for effluent, and pump for influent. Considering the processes of WWTP, the specific energy consumption rate of the process using media and MBR was the lowest (0.549 kWh/㎥) and the highest (1.427 kWh/㎥), respectively. Energy-saving by enhancing anaerobic digester efficiency was turned out to be efficient when in conjunction with stable wastewater treatment. The result of economic analysis (B/C ratio) was 2.5 for digestive gas power generation, 0.86 for small hydropower, 0.49 for solar energy, and 0.15 for wind energy, respectively. Furthermore, it was observed that the energy independence rate could be enhanced by installing energy production facilities such as solar and small hydropower and reducing energy consumption via the replacement of high-efficiency operating.

Modeling and Simulation of Small and Medium-sized Ships for Fuel Reduction Rate Verification (연료 감소율 검증을 위한 중소형 선박의 모델링 및 시뮬레이션)

  • Kim, Sung-Dong;Kim, Nam-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.6
    • /
    • pp.914-921
    • /
    • 2022
  • The International Maritime Organization (IMO) has set a goal of reducing ship's carbon dioxide emissions by 70% and greenhouse gas emissions by 50% by 2050 compared to 2008. Shipowners and shipyards are promoting various R&D activities such as LNG propulsion, ammonia propulsion, electric propulsion, CO2 capture, and shaft generators as a way to satisfy this problem. The dual shaft generator has the advantage that it can be directly applied to an existing ship through remodeling. In this paper, the total fuel reduction rate that can be obtained by applying the shaft generator to the existing ship was verified through simulation. For this purpose, the size of the medium-sized ship was defined, and the governor, diesel engine, propeller, torque switch, generator for shaft generator, propulsion motor for shaft generator, and ship model were modeled and simulated.

Analysis of Chemical Compositions and Energy Contents of Different Parts of Yellow Poplar for Development of Bioenergy Technology

  • Myeong, Soo-Jeong;Han, Sim-Hee;Shin, Soo-Jeong
    • Journal of Korean Society of Forest Science
    • /
    • v.99 no.5
    • /
    • pp.706-710
    • /
    • 2010
  • Understanding of chemical composition and energy contents in tree is important to develope strategies of renewable energy policy to cope with climate change. Residual biomass as renewable energy source was evaluated and focused on the bark-containing branches. Chemical analysis studies were conducted for different part of yellow poplar (Liriodendron tulipifera), which were partitioned to inner bark, outer bark, small branches, medium branches, big branches and trunk. The variations in hydrophobic extractives, hydrophilic extractives, lignin, carbohydrate compositions, energy contents (higher heating value) and the ash content were determined. The inner and outer bark had higher ash content, hydrophobic and hydrophilic extractives content, and higher energy content than those of tree trunk. Polysaccharides content in inner and outer bark was quite lower than those of stem or branches. Based on the energy content of residual biomass, replacement of fossil fuel and greenhouse gas emission abatement were calculated.

Light-weight Optimum Design of Laminate Structures of a GFRP Fishing Vessel (GFRP 낚시어선의 선체구조 적층판 분석과 경량화 설계)

  • Jang, Jae-Won;Han, Zhiqiang;Oh, Daekyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.6
    • /
    • pp.495-503
    • /
    • 2019
  • Approximately 90,000 ships are registered in South Korea, and about 80,000 of these ships are used in domestic shipping. Among these, 84% are small ships, such as a fishing vessels that weigh less than 20 tons and are made mostly of an FRP (Fiber Reinforced Plastics). When this fact is taken into account, the greenhouse gas emissions that are released per ton of a composite vessel are sizeable. In this study, the laminated structures of an FRP fishing vessel, many of which currently are being built in Korea, were analyzed by ISO (International Organization for Standardization) and international design rules, and the structures of the hulls are lightweight with optimum glass fiber mass content as determined by the laminate weight minimization algorithm. As a result, it was confirmed that the laminations of the vessels in accordance with the Korean rule could have 6.4% to approximately 11% more design margin compared to the requirements of ISO and other international rules. And the case study of the application of the laminate weight minimization algorithm showed the possibility of reducing the weight of the hull bottom plating by as much as about 19.32% and by as much as about 18.06% in the overall structure.

Future Extreme Temperature and Precipitation Mechanisms over the Korean Peninsula Using a Regional Climate Model Simulation

  • Lee, Hyomee;Moon, Byung-Kwon;Wie, Jieun
    • Journal of the Korean earth science society
    • /
    • v.39 no.4
    • /
    • pp.327-341
    • /
    • 2018
  • Extreme temperatures and precipitations are expected to be more frequently occurring due to the ongoing global warming over the Korean Peninsula. However, few studies have analyzed the synoptic weather patterns associated with extreme events in a warming world. Here, the atmospheric patterns related to future extreme events are first analyzed using the HadGEM3-RA regional climate model. Simulations showed that the variability of temperature and precipitation will increase in the future (2051-2100) compared to the present (1981-2005), accompanying the more frequent occurrence of extreme events. Warm advection from East China and lower latitudes, a stagnant anticyclone, and local foehn wind are responsible for the extreme temperature (daily T>$38^{\circ}C$) episodes in Korea. The extreme precipitation cases (>$500mm\;day^{-1}$) were mainly caused by mid-latitude cyclones approaching the Korean Peninsula, along with the enhanced Changma front by supplying water vapor into the East China Sea. These future synoptic-scale features are similar to those of present extreme events. Therefore, our results suggest that, in order to accurately understand future extreme events, we should consider not only the effects of anthropogenic greenhouse gases or aerosol increases, but also small-scale topographic conditions and the internal variations of climate systems.