• 제목/요약/키워드: Small Face Detection

검색결과 55건 처리시간 0.019초

Clinical and Laboratory Features to Consider Genetic Evaluation among Children and Adolescents with Short Stature

  • Seokjin Kang
    • Journal of Interdisciplinary Genomics
    • /
    • 제5권2호
    • /
    • pp.18-23
    • /
    • 2023
  • Conventional evaluation method for identifying the organic cause of short stature has a low detection rate. If an infant who is small for gestational age manifests postnatal growth deterioration, triangular face, relative macrocephaly, and protruding forehead, a genetic testing of IGF2, H19, GRB10, MEST, CDKN1, CUL7, OBSL1, and CCDC9 should be considered to determine the presence of Silver-Russell syndrome and 3-M syndrome. If a short patient with prenatal growth failure also exhibits postnatal growth failure, microcephaly, low IGF-1 levels, sensorineural deafness, or impaired intellectual development, genetic testing of IGF1 and IGFALS should be conducted. Furthermore, genetic testing of GH1, GHRHR, HESX1, SOX3, PROP1, POU1F1, and LHX3 should be considered if patients with isolated growth hormone deficiency have short stature below -3 standard deviation score, barely detectable serum growth hormone concentration, and other deficiencies of anterior pituitary hormone. In short patients with height SDS <-3 and high growth hormone levels, genetic testing should be considered to identify GHR mutations. Lastly, when severe short patients (height z score <-3) exhibit high levels of prolactin and recurrent pulmonary infection, genetic testing should be conducted to identify STAT5B mutations.

Network Anomaly Traffic Detection Using WGAN-CNN-BiLSTM in Big Data Cloud-Edge Collaborative Computing Environment

  • Yue Wang
    • Journal of Information Processing Systems
    • /
    • 제20권3호
    • /
    • pp.375-390
    • /
    • 2024
  • Edge computing architecture has effectively alleviated the computing pressure on cloud platforms, reduced network bandwidth consumption, and improved the quality of service for user experience; however, it has also introduced new security issues. Existing anomaly detection methods in big data scenarios with cloud-edge computing collaboration face several challenges, such as sample imbalance, difficulty in dealing with complex network traffic attacks, and difficulty in effectively training large-scale data or overly complex deep-learning network models. A lightweight deep-learning model was proposed to address these challenges. First, normalization on the user side was used to preprocess the traffic data. On the edge side, a trained Wasserstein generative adversarial network (WGAN) was used to supplement the data samples, which effectively alleviates the imbalance issue of a few types of samples while occupying a small amount of edge-computing resources. Finally, a trained lightweight deep learning network model is deployed on the edge side, and the preprocessed and expanded local data are used to fine-tune the trained model. This ensures that the data of each edge node are more consistent with the local characteristics, effectively improving the system's detection ability. In the designed lightweight deep learning network model, two sets of convolutional pooling layers of convolutional neural networks (CNN) were used to extract spatial features. The bidirectional long short-term memory network (BiLSTM) was used to collect time sequence features, and the weight of traffic features was adjusted through the attention mechanism, improving the model's ability to identify abnormal traffic features. The proposed model was experimentally demonstrated using the NSL-KDD, UNSW-NB15, and CIC-ISD2018 datasets. The accuracies of the proposed model on the three datasets were as high as 0.974, 0.925, and 0.953, respectively, showing superior accuracy to other comparative models. The proposed lightweight deep learning network model has good application prospects for anomaly traffic detection in cloud-edge collaborative computing architectures.

Prediction of Longline Fishing Activity from V-Pass Data Using Hidden Markov Model

  • Shin, Dae-Woon;Yang, Chan-Su;Harun-Al-Rashid, Ahmed
    • 대한원격탐사학회지
    • /
    • 제38권1호
    • /
    • pp.73-82
    • /
    • 2022
  • Marine fisheries resources face major anthropogenic threat from unregulated fishing activities; thus require precise detection for protection through marine surveillance. Korea developed an efficient land-based small fishing vessel monitoring system using real-time V-Pass data. However, those data directly do not provide information on fishing activities, thus further efforts are necessary to differentiate their activity status. In Korea, especially in Busan, longlining is practiced by many small fishing vessels to catch several types of fishes that need to be identified for proper monitoring. Therefore, in this study we have improved the existing fishing status classification method by applying Hidden Markov Model (HMM) on V-Pass data in order to further classify their fishing status into three groups, viz. non-fishing, longlining and other types of fishing. Data from 206 fishing vessels at Busan on 05 February, 2021 were used for this purpose. Two tiered HMM was applied that first differentiates non-fishing status from the fishing status, and finally classifies that fishing status into longlining and other types of fishing. Data from 193 and 13 ships were used as training and test datasets, respectively. Using this model 90.45% accuracy in classifying into fishing and non-fishing status and 88.23% overall accuracy in classifying all into three types of fishing statuses were achieved. Thus, this method is recommended for monitoring the activities of small fishing vessels equipped with V-Pass, especially for detecting longlining.

Using CNN- VGG 16 to detect the tennis motion tracking by information entropy and unascertained measurement theory

  • Zhong, Yongfeng;Liang, Xiaojun
    • Advances in nano research
    • /
    • 제12권2호
    • /
    • pp.223-239
    • /
    • 2022
  • Object detection has always been to pursue objects with particular properties or representations and to predict details on objects including the positions, sizes and angle of rotation in the current picture. This was a very important subject of computer vision science. While vision-based object tracking strategies for the analysis of competitive videos have been developed, it is still difficult to accurately identify and position a speedy small ball. In this study, deep learning (DP) network was developed to face these obstacles in the study of tennis motion tracking from a complex perspective to understand the performance of athletes. This research has used CNN-VGG 16 to tracking the tennis ball from broadcasting videos while their images are distorted, thin and often invisible not only to identify the image of the ball from a single frame, but also to learn patterns from consecutive frames, then VGG 16 takes images with 640 to 360 sizes to locate the ball and obtain high accuracy in public videos. VGG 16 tests 99.6%, 96.63%, and 99.5%, respectively, of accuracy. In order to avoid overfitting, 9 additional videos and a subset of the previous dataset are partly labelled for the 10-fold cross-validation. The results show that CNN-VGG 16 outperforms the standard approach by a wide margin and provides excellent ball tracking performance.

A Study on a Method for Detecting Leak Holes in Respirators Using IoT Sensors

  • Woochang Shin
    • International journal of advanced smart convergence
    • /
    • 제12권4호
    • /
    • pp.378-385
    • /
    • 2023
  • The importance of wearing respiratory protective equipment has been highlighted even more during the COVID-19 pandemic. Even if the suitability of respiratory protection has been confirmed through testing in a laboratory environment, there remains the potential for leakage points in the respirators due to improper application by the wearer, damage to the equipment, or sudden movements in real working conditions. In this paper, we propose a method to detect the occurrence of leak holes by measuring the pressure changes inside the mask according to the wearer's breathing activity by attaching an IoT sensor to a full-face respirator. We designed 9 experimental scenarios by adjusting the degree of leak holes of the respirator and the breathing cycle time, and acquired respiratory data for the wearer of the respirator accordingly. Additionally, we analyzed the respiratory data to identify the duration and pressure change range for each breath, utilizing this data to train a neural network model for detecting leak holes in the respirator. The experimental results applying the developed neural network model showed a sensitivity of 100%, specificity of 94.29%, and accuracy of 97.53%. We conclude that the effective detection of leak holes can be achieved by incorporating affordable, small-sized IoT sensors into respiratory protective equipment.