• 제목/요약/키워드: Small Deformation

검색결과 980건 처리시간 0.023초

입자법을 이용한 지반공학 대변형 문제 해석 (Analyses of Large Deformation Problems in Geotechnical Engineering using Particle Method)

  • 박성식
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 세계 도시지반공학 심포지엄
    • /
    • pp.1090-1094
    • /
    • 2009
  • Many problems in geotechnical engineering such as slop failure, debris flow, ground heaving due to embankment, and lateral flow caused by liquefaction are related to large deformation rather than small deformation. Traditional numerical methods such as finite element and finite difference methods have a difficulty to solve such large deformations because they use grids. A particle method was developed for fluid dynamics. The particle method can solve large deformation problems because it uses particles to discretize differential equations. It can also include soil constitutive model and thus solve soil behavior on various boundary conditions. In this study, a particle method, which is based on particles rather than grids, is introduced and used to simulate large deformation including soil failure. The developed method can be applied for various large deformation problems in geotechnical engineering because it incorporates soil constitutive models.

  • PDF

대형진동삼축시험기를 이용한 암석재료의 동적변형특성에 관한 실험적 연구 (An Experimental Study on Dynamic Deformation Properties of Rock Materials using Large Triaxial Testing Apparatus)

  • 신동훈
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.299-308
    • /
    • 2003
  • In order to investigate the dynamic deformation properties of rockfill materials in small strain level, cyclic triaxial tests were conducted using the large cyclic triaxial testing apparatus, which was developed by Water Resources Research Institute of KOWACO in 2001. Two types of rockfill materials consisting of granite and shale-sandstone were tested in this study. The test results show that G/G$\_$max/ of granite specimen decreases more than that of shale-sandstone with the increase of shear strain and the increase ratio in the maximum shear modulus G$\_$max/ of granite is bigger than the ratio of shale-sandstone.

  • PDF

용접각변형에 미치는 용접길이의 영향 (The Effects of Welding Length on the Angular Distortion)

  • 박정웅;이해우
    • Journal of Welding and Joining
    • /
    • 제23권4호
    • /
    • pp.48-52
    • /
    • 2005
  • To estimate welding deformation for large steel structures, either experiment result with small specimen or analysis result of FEM with small numerical model is used. Consequently, it is important to decide the welding length of specimen and numerical model not to have an effect on welding deformation for accurate estimation of whole welding deformation. This study experimentally clarifies the effect of welding length on angular distortion due to welding by varying welding length of specimens, but fixing width and thickness of specimens on V-groove butt welding, fillet welding and bead on plate welding. As a resell the critical welding length on fillet welding and on bead on plate welding is over 500mm and on V-groove butt welding is over 1,000mm.

강성벽체와 단보강재를 갖는 철도보강노반에 대한 연구 (Research on the railroad reinforcement subgrade with short reinforcement and rigid facing)

  • 김대상;김기환
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 세계 도시지반공학 심포지엄
    • /
    • pp.350-358
    • /
    • 2009
  • To enhance the application of the reinforced retaining walls in the railway industry, this paper suggested a type of reinforcement subgrade with short reinforcement and rigid facing. To become popular the reinforced retaining walls in the industry, the deformation of retaining walls should be controlled below some limited level. In this paper, small scale and full scale tests of the proposed retaining walls were performed and their deformation characteristics were evaluated. Even though it has short reinforcement, the rigid type retaining wall had small deformation to the external train loading than the segmental type retaining wall had.

  • PDF

Closed-form solution of axisymmetric deformation of prestressed Föppl-Hencky membrane under constrained deflecting

  • Lian, Yong-Sheng;Sun, Jun-Yi;Dong, Jiao;Zheng, Zhou-Lian;Yang, Zhi-Xin
    • Structural Engineering and Mechanics
    • /
    • 제69권6호
    • /
    • pp.693-698
    • /
    • 2019
  • In this study, the problem of axisymmetric deformation of prestressed $F{\ddot{o}}ppl-Hencky$ membrane under constrained deflecting was analytically solved and its closed-form solution was presented. The small-rotation-angle assumption usually adopted in membrane problems was given up, and the initial stress in membrane was taken into account. Consequently, this closed-form solution has higher calculation accuracy and can be applied for a wider range in comparison with the existing approximate solution. The presented numerical examples demonstrate the validity of the closed-form solution, and show the errors of the contact radius, profile and radial stress of membrane in the existing approximate solution brought by the small-rotation-angle assumption. Moreover, the influence of the initial stress on the contact radius is also discussed based on the numerical examples.

Superplastic Deformation in the Low Stress Region

  • Jang, Chun-Hag;Kim, Chang-Hong;Ree, Tai-Kyue
    • Bulletin of the Korean Chemical Society
    • /
    • 제5권2호
    • /
    • pp.73-78
    • /
    • 1984
  • Superplastic alloys generally exhibit a three-stage sigmoidal variation of stress (f) with strain rate (s), the stages being named region 1, 2 and 3 according to the increasing order of stress or strain rate. In the recent years, two different types of papers have been published on the plastic deformation of Zn-22% Al eutectoid in region Ⅰ differing in strain-rate sensitivity m (= dln f/dln s). In this paper, the data of the two groups have been analysed by applying Kim and Ree's theory of superplastic deformation. (1) We obtained the parametric values of $X_{gj}/{\alpha}_{gj}\;and\;{\beta)_{gj}$ (g: grain boundary, j = 1,2 indicating flow units) appearing in Kim and Ree's theory [Eq. (2a)]. (2) It was found that the value of $X_{g^2}/{\alpha}_{g^2}$ is small for the group data with small m, i.e., ${\alpha}_{g^2}$, which is proportional to the size of flow unit g2, is large whereas ${\alpha}_{g^2}$ is small for the groups data with large m, i.e., the size of the flow unit g2 is small. In other words, the two types of behavior occur by the size difference in the flow units. (3) From the ${\beta}_{gj}$ value, which is proportional to the relaxation time of flow unit gj, the ${\Delta}H_{gj}^{\neq}$ for the flow process was calculated, and found that ${\Delta}H_{g^2}^{\neq}$ is large for the group data with small m whereas it is small for the group data with large m. (4) The flow-unit growth was studied, but it was concluded that this effect is not so important for differentiating the two groups. (5) The difference in ${\alpha}_{g^2}$ and in the growth rate of flow units is caused by minute impurities, crystal faults, etc., introduced in the sample preparation.

전단 스피닝에 의한 원추형상의 성형에 관한 변형 메커니즘 (New Deformation Mechanism in the Forming of Cones by Shear Spinning)

  • 김재훈;김철
    • 소성∙가공
    • /
    • 제14권4호
    • /
    • pp.375-383
    • /
    • 2005
  • The shear spinning process, where the plastic deformation zone is localized in a very small portion of the workpiece, shows a promise for increasingly broader application to the production of axially symmetric parts. In this paper, the three components of the working force are calculated by a newly proposed deformation model in which the spinning process is understood as shearing deformation after uniaxial yielding by bending, and shear stress, $\tau_{rz}$, becomes k, yield limit in pure shear, in the deformation zone. The tangential force are first calculated and the feed force and the normal force are obtained by the assumption of uniform distribution of roller pressure on the contact surface. The optimum contact area is obtained by minimizing the bending energy required to get the assumed deformation of the blank. The calculated forces are compared with experimental results. A comparison shows that theoretical prediction is reasonably in good agreement with experimental results

Application of machine learning and deep neural network for wave propagation in lung cancer cell

  • Xing, Lumin;Liu, Wenjian;Li, Xin;Wang, Han;Jiang, Zhiming;Wang, Lingling
    • Advances in nano research
    • /
    • 제13권3호
    • /
    • pp.297-312
    • /
    • 2022
  • Coughing and breath shortness are common symptoms of nano (small) cell lung cancer. Smoking is main factor in causing such cancers. The cancer cells form on the soft tissues of lung. Deformation behavior and wave vibration of lung affected when cancer cells exist. Therefore, in the current work, phase velocity behavior of the small cell lung cancer as a main part of the body via an exact size-dependent theory is presented. Regarding this problem, displacement fields of small cell lung cancer are obtained using first-order shear deformation theory with five parameters. Besides, the size-dependent small cell lung cancer is modeled via nonlocal stress/strain gradient theory (NSGT). An analytical method is applied for solving the governing equations of the small cell lung cancer structure. The novelty of the current study is the consideration of the five-parameter of displacement for curved panel, and porosity as well as NSGT are employed and solved using the analytical method. For more verification, the outcomes of this reports are compared with the predictions of deep neural network (DNN) with adaptive optimization method. A thorough parametric investigation is conducted on the effect of NSGT parameters, porosity and geometry on the phase velocity behavior of the small cell lung cancer structure.

몇가지 채소류의 압축 및 비압축 특성 (Compression and Decompression Properties of Some Vegetables)

  • 민용규;정헌상
    • 한국식품과학회지
    • /
    • 제29권2호
    • /
    • pp.266-272
    • /
    • 1997
  • 오이, 무우, 마늘 생강 및 감자의 가식부위를 일정크기$({\Phi}\;5\;mm{\times}H\;5\;mm)$로 만든 후, 힘을 가할 때와 제거할 때 발생하는 힘-변형 곡선의 관계로부터 압축 및 비압축 특성을 살펴보고 성분함량 및 세포특성과의 관계를 살펴보았다. 힘을 가하는 초기에 변형의 증가속도가 컸지만 그 이후에는 감소하였으며, 힘을 제거할 때는 압축시와 반대의 결과를 보였다. 9 N에 도달하는 시간과 변형은 감자가 컸으며 마늘이 작았다. 압축 및 비압축시 모든 시료가 분명한 이력현상을 보였으며, 힘(y)과 변형(x)은 y=exp(a+b log(x))의 관계가 있었다. 힘을 가할 때에는 감자가 $3.888{\sim}5.099{\times}10^{-3}\;J$의 많은 일을 하였으며, 그 다음으로는 오이, 무우 순이었으나 힘을 제거할 때에는 마늘이 $2.09{\times}10^{-3}\;J$로 많은 일을 하였다. 비회복성 일은 오이, 무우, 감자가 $76{\sim}96%$이었으며, 마늘이 $36{\sim}42%$로 작았다. 힘을 가할 때 변형은 감자가 컸으며, 마늘이 작았다. 탄성도는 마늘이 압축속도 별로 각각 0.777 및 0.756로 컸으며, 감자와 무우는 $0.301{\sim}0.465$로 작았다. 압축 및 비압축 특성치는 수분함량, 즙액의 점도, 세포의 크기, 조밀도 및 규칙성과 높은 상관이 있었다.

  • PDF

Buckling temperature of a single-walled boron nitride nanotubes using a novel nonlocal beam model

  • Elmerabet, Abderrahmane Hadj;Heireche, Houari;Tounsi, Abdelouahed;Semmah, Abdelwahed
    • Advances in nano research
    • /
    • 제5권1호
    • /
    • pp.1-12
    • /
    • 2017
  • In this paper, the critical buckling temperature of single-walled Boron Nitride nanotube (SWBNNT) is estimated using a new nonlocal first-order shear deformation beam theory. The present model is capable of capturing both small scale effect and transverse shear deformation effects of SWBNNT and is based on assumption that the inplane and transverse displacements consist of bending and shear components, in which the bending components do not contribute toward shear forces and, likewise, the shear components do not contribute toward bending moments. Results indicate the importance of the small scale effects in the thermal buckling analysis of Boron Nitride nanotube.