• Title/Summary/Keyword: Small Current Interruption

Search Result 32, Processing Time 0.027 seconds

Comparison of Small Current Interruption Capability Depending on the Type of Interrupter (차단부 형태에 따른 소전류 차단성능 비교)

  • Song, Ki-Dong;Chong, Jin-Kyo;Kim, Hong-Kyu
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.7
    • /
    • pp.362-368
    • /
    • 2006
  • This paper presents the results of a small capacitive current interruption test for the three types of interrupter which are called 'serial type', 'parallel/separated type' and 'puffer type' according to the arrangement of the thermal expansion chamber and the puffer cylinder. After the preconditioning test the small current interruption capability of the 'puffer type' decreased, on the contrary, that of the hybrid interrupters increased. A number of reignition have been occurred in the 'serial type' hybrid interrupter and the change of small current interruption capability after preconditioning test is mainly influenced by the structure of interrupter. Finally it has been proved that the 'parallel/separated type' hybrid interrupter has the best interruption performance through the verification tests.

Evaluation Method I of the Small Current Breaking Performance for SF(sub)6-Blown High-Voltage Gas Circuit Breakers (초고압 $SF_6$ 가스차단기의 소전류 차단성능 해석기술 I)

  • 송기동;이병운;박경엽;박정후
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.50 no.7
    • /
    • pp.331-337
    • /
    • 2001
  • With the increasing reliability of analysis schemes and the dramatically increased calculating speed, the computer simulation has become and indispensable process to predict the interruption capacity of circuit breakers. Generally, circuit breakers have to possess both the small current and large current interruption abilities and the circuit breaker designers need to evaluate its capacities to save the time and the expense. The analysis of small current and the large current interruption performances have been considered separately because the phenomena occurring in a interrupter are quite different. To analyze the dielectric recovery after large current interruption many physical phenomena such as heat transfer, convection and arc radiation, the nozzle ablation, the ionization of high temperature SF(sub)6 gas, the electric and themagnetic forces and so forth mush be considered. However, in the analysis of small current interruption performance only the cold gas flow analysis needs to be carried out because the capacitive current is to small that the influence from the current can be neglected. In this paper, an empirical equation which is obtained from a series of tests to estimate the dielectric recovery strength has been applied to a real circuit breaker. The results of analysis have been compared with the test results and the reliability has been investigated.

  • PDF

Flow Analysis of Gas Circuit Breakers for Developing the Small Current Interruption Performance (가스차단기의 소전류 차단성능 향상을 위한 유동해석)

  • Lee, Jong-Chul;Choi, Jong-Ung;Kang, Sung-Mo;Kim, Youn-Jea
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1961-1965
    • /
    • 2003
  • The flow analysis is needed to verify the physical phenomena through interruption processes for improving the capacity and the reliability of gas circuit breakers. Moreover the small current interruption performance of GCBs could be predicted by coupling the flow characteristics with the electric field one. In this paper, the unsteady flow characteristics and the traveling trajectory are depicted with a commercial CFD code, PHOENICS, programmed for moving motion of objects. In order to validate computational results, the measured pressure data in cylinder and in front of arcing contact are compared with the test results of small current interruption.

  • PDF

Analysis of Small Current Interruption Performance for $SF_6$ Gas Circuit Breaker ($SF_6$ 가스차단기의 소전류 차단성능 해석)

  • Kim, Hong-Kyu;Song, Ki-Dong;Chong, Jin-Kyo;Oh, Yeon-Ho;Park, Kyong-Yop
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.10
    • /
    • pp.528-533
    • /
    • 2006
  • To analyze the small current interruption performance for the gas circuit breakers, the gas density and electric field intensity should be calculated. In this paper, the FVFLIC method is used for the gas flow analysis and the FEM for the electric field analysis. Then, the dielectric withstanding voltage is evaluated by the empirical formulation or Streamer theory. By comparing the calculated dielectric strength with the test result, it is found that both methods show good prediction capability for the small current interruption performance. Especially, when both methods predict the same interrupting performance, the prediction is in accordance with the experimental result.

Evaluation Method II of the Small Current Breaking Performance of SF$_6$-Blown High-Voltage Gas Circuit Breakers (초고압 $SF_6$가스차단기의 소전류 차단성능 해석기술 II)

  • 송기동;이병윤;박경엽;박정후
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.50 no.8
    • /
    • pp.384-391
    • /
    • 2001
  • The insulation strength between contacts after current interruption to the transient recovery voltage i.e., the dielectric recovery strength should be estimated for the evaluation of the small capacitive current interruption capability. Many authors have used theoretical and semi-experimental approaches to evaluate the transient breakdown voltage after the current interruption. Moreover, an empirical equation, which is obtained from a series of tests, has been used to estimated the dielectric recovery strength. Un this paper, the theoretical method which is generated from the streamer theory has been applied to real circuit breakers in order to evaluated the interruption capability. The results of analysis have been compared with the test results and the reliability has been investigated.

  • PDF

Investigation of Small Current Interruption Performance for New Type of Interrupting Chamber in SF$_{6}$ Gas Circuit Breaker (신차단방식 SF$_{6}$ 가스 차단기의 소전류 차단성능 연구)

  • Song, Won-Pyo;Kweon, Ki-Yeoung;Lee, Jae-Sung;Song, Ki-Dong;Kim, Maeng-Hyun;Ko, Hee-Seok
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.11
    • /
    • pp.519-526
    • /
    • 2005
  • This paper presents computer simulation results for developing new type of SF$_{6}$ Circuit Breaker in terms of cold gas flow after small current interruption. This cold gas flows down a nozzle into the chamber of a circuit breaker. There are many difficult problems in analyzing the gas flow due to complex geometry, moving boundary, shock wave and so on. When predicting the dielectric capability of a gas circuit breaker after interruption, the gas pressure and density distributions due to the cold gas must be considered in addition to the electrical field imposed across the gas. A self-coded computational fluid dynamics (CFD) program is used for the simulation of cold gas flow in order to evaluate the electrical field characteristic across open contacts and transient characteristics of insulations after small current interruption.

A Research on Dielectric Characteristics of Small Current Interruption Considering Pre-Condition Test for Puffer Type Circuit Breaker (Pre-Condition 시험을 고려한 Puffer식 차단기의 진상소전류 차단성능에 관한 연구)

  • Ahn, Heui-Sub;Yoon, Jeong-Hoon;Lee, Jong-Chul;Choi, Jong-Ung;Oh, Il-Sung;Lee, Sung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2003.10b
    • /
    • pp.12-14
    • /
    • 2003
  • This paper presents the small current interruption capability of $SF_6$ puffer circuit breaker considering pre-condition. Firstly, the change of dielectric strength of the 3 breakers was compared with testing breakers as clean contacts and eroded contacts after 3 shots of 760 according to new IEC 62271-100 standard. Also the dielectric strength curve of each model was calculated through flow and electric field simulations. From these results, we could modify the empirical equation, being used to predict the dielectric strength of small current interruption capability, considering the effects of pre-condition.

  • PDF

Analysis of Small Current Interruption Performance for EHV Gas Circuit Breaker (초고압 가스차단기의 소전류 차단성능 해석)

  • Kim, H.K.;Park, K.Y.;Song, K.D.
    • Proceedings of the KIEE Conference
    • /
    • 2006.10d
    • /
    • pp.22-24
    • /
    • 2006
  • This paper presents the prediction method of small current interruption Performance for EHV gas circuit breakers. The FVFLIC method is used for the gas flow analysis and the FEM for the electric field analysis. Then, the dielectric withstanding voltage is evaluated by the empirical formulation or Streamer theory. By comparing the calculated dielectric strength with the test result. it is found that both methods show good prediction capability for the small current interruption performance. Especially, when both methods predict the same interrupting performance, the prediction is in accordance with the experimental result.

  • PDF

Comparison of Evaluation Methods of the Small Current Breaking Performance for $SF_{6}$ Gas Circuit Breakers

  • Song, Ki-Dong;Lee, Byeong-Yoon;Park, Kyong-Yop;Park, Jung-Hoo
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.11B no.4
    • /
    • pp.129-136
    • /
    • 2001
  • In order to evaluate the dielectric recovery strength for GCBs, two equations have been usually utilized. One is the empirical formula obtained from a series of tests and the other is the theoretical formula obtained from the streamer theory. In this paper, both methods were applied to predict the small capacitive current interruption capability of model circuit breakers and were investigated in terms of the reliability by comparing the simulation results with test ones.

  • PDF

An Analysis of Cold Gas Flow-Field for UHV Class Interrupters (초고압 가스차단부의 냉가스 유동해석)

  • Song, Gi-Dong;Park, Gyeong-Yeop;Song, Won-Pyo
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.6
    • /
    • pp.387-394
    • /
    • 2000
  • This paper presents a method of cold gas flow-field analysis within puffer type GCB(Gas Circuit Breaker). Using this method, the entire interruption process including opening operation of GCB can be simulated successfully. In particular, the distortion problem of the grid due to the movement of moving parts can be dealt with by the fixed grid technique. The gas parameters such as temperature, pressure, density, velocity through the entire interruption process can be calculated and visualized. It was confirmed that the time variation of pressure which was calculated from the application of the method to a model GCB agreed with the experimental one. Therefore it is possible to evaluate the small current interruption capability analytically and to design the interrupter which has excellent interruption capability using the proposed method. It is expected that the proposed method can reduce the time and cost for development of GCB very much. It also will be possible to develop the hot-gas flow-field analysis program by combining the cold-gas flow field program with the arc model and to evaluate the large current interruption capability.

  • PDF