• Title/Summary/Keyword: Small Antenna

Search Result 564, Processing Time 0.029 seconds

Design of Ultra Small Dual Cross-Dipole Antenna for Mobile Devices (모바일 기기를 위한 초소형 이중 교차 다이폴 안테나 설계)

  • Sa, Gi-Dong;Kim, Sa-Ung;Lim, Yeong-Seog
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.3
    • /
    • pp.489-496
    • /
    • 2019
  • In this paper, we design and fabricate an ultra small dual crossed dipole antenna operating at 2.4 GHz frequency. In order to miniaturize the size of the antenna so that it can be applied to a mobile device, a cross dipole is disposed on the upper two layers and a reflection plane, a horizontal matching circuit and a ground plane are arranged on each layer. The circuit was connected by a vertical through-hole. The size of the fabricated antenna is $21.61mm{\times}16.88mm{\times}1.27mm$, the measured reflection coefficient is -31.5 dB, and the bandwidth below -10 dB is 112 MHz. In addition, since the gain of the antenna is -4 dBi, it has the omnidirectional radiation characteristic, so it can be applied to various fields as an antenna for mobile devices.

Study on a combined televisin Receiving Antenna (전대역 TV 전파수신 안테나의 개발연구)

  • 박정기;이두수
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.11 no.4
    • /
    • pp.9-16
    • /
    • 1974
  • The low channels with frequency range of 54~88MHz and the high channels with frequency range if 174~216 MHz are in use for TV broadcasting in Korea. Since the ratio of the highest frequency to the lowest frequency is 4 to 1, only a logarithmic periodic antenna cou1d cover such an wide frequency range. But, this log-periodic antenna should be big in size. Studies have been done on an antenna of small size with reasonable gain which combines through a channel filter a LPD antenna if low channel with boom length of 2m and a LPD antenna of high channel with boom length of 1.8m. The whole antenna is connected to feeder line through a talun. Experiment shows that the gain of low and high channels is 7 dB and 9 dB respectively, which are lower than theoretical values br nomore than ldB. The difference seemed to come from slight impedance mismatches between antennas and feeder lines, loss in the filter and measurement errors.

  • PDF

Design of Broadband Microstrip Patch Antenna for Mobile Communications

  • Kim, Jang-Wook;Jeon, Joo-Seong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.4
    • /
    • pp.67-74
    • /
    • 2017
  • The objective of this paper is to design broadband microstrip patch antenna for mobile communication service. The enhanced features were confirmed and proved by comparing the proposed antenna with the antennae that have been reported in the relevant literatures. The experimental results show that the impedance bandwidth(VSWR ${\leq}2$) of 19.6%(fo=1,920MHz) and the peak gain of 5.53dBi(at 1,900MHz) were obtained by the mobile communication service frequency band. The proposed antenna had the impedance bandwidth of about 3.1% larger than that of the reported microstrip antenna.

Compact wideband printed antenna with band-rejection characteristic (대역 저지 특성을 갖는 소형 광대역 안테나)

  • Choi, Woo-Young;Seol, Kyung-Moon;Jung, Ji-Hak;Chung, Kyung-Ho;Choi, Jae-Hoon
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2005.11a
    • /
    • pp.259-264
    • /
    • 2005
  • In this paper, a novel compact microstrip-fed antenna with band-rejection characteristic for wideband applications is proposed. By cutting an L-shaped notch on the radiation patch, the wideband property for the proposed antenna is achieved. In addition, a C-shaped slot is introduced to obtain the band rejection operation of the antenna. The antenna, with very small size of $15.5\times21 mm^2$ including the ground plane, operates over 3.08 to 10.97 GHz and has the rejection band of 5.03 to 5.91 GHz for $S_{11}$ < -10 dB.

  • PDF

Design and Fabrication of Small UWB Antenna (소형 UWB 안테나 설계 및 제작)

  • Bae, Jin-Woo;Ko, Ji-Hwan;Cho, Young-Ki
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2005.11a
    • /
    • pp.221-224
    • /
    • 2005
  • In this paper, We have designed, fabricated and measured a stacked planar antenna for Ultra-Wideband communication. Radiation parts of the antenna have exponential curve and fed by strip feeding network. We have used the HFSS of Ansoft to simulate the antenna. It was designed to work on a substrate Teflon of thickness 1.575mm and relative permittivity 3.2. The proposed antenna covered the entire UWB band( 3.1GHz $\sim$ 10.6GHz ) for S11$\leq$l0dB. Also the proposed antenna show a good characteristics, linear phase, omni -directional pattern lot UWB applications. Besides the measured results have a reasonable agreement with the simulated results.

  • PDF

An Antenna with Combination of Electric-Magnetic Radiators for NotePC Platform (전기-자기계 방사체 결합형 노트 PC용 안테나)

  • Kim, Yong-Jin;Kim, Jin-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.1
    • /
    • pp.24-28
    • /
    • 2010
  • This paper is presented on the antenna design for notepc platform. We present the antenna with combination of electric-magnetic radiator for dual-band Wireless Local Area Network (WLAN) service and a High Speed Downlink Packet Access (HSDPA) service. Due to the limited antenna space in notepc platform, the antennas for various wireless communication service should be located at a very small area. In this paper, the magnetic-type radiator works for high frequency band (1.7 - 2.1 GHz) application and the electric-type radiator works for low frequency band (820 - 960 MHz) application. This combination produces wide-band characteristics in the high frequency band. Simulation and experimental results of input impedance and gain characteristics of the proposed antenna are presented. There are good agreements between the simulated and measured S11 and gain values.

Internal GPS Antenna for Mobile Phone (휴대단말기 내장형 GPS 안테나)

  • Hwang, Jae-Ho
    • Journal of Advanced Navigation Technology
    • /
    • v.6 no.2
    • /
    • pp.113-118
    • /
    • 2002
  • In this paper, an internal GPS antenna for mobile phones is designed and fabricated. For the miniaturization of the antenna, high permittivity dielectric substrate((${\varepsilon}_r$=90) and small ground plane ($13mm{\times}13mm$) are used. To increase the receive gain, the antenna is composed with LNA(Low Noise Amplifier). Results of the manufactured antenna($13mm{\times}13mm{\times}8mm$) show that the maximum antenna gain is about 12 dBi, the axial ratio is less than 3 dB, and the current consumption of LNA is less than 4 mA.

  • PDF

Estimation for Input Impedance of Microstrip Patch Antenna corresponding to Cutting Shape (마이크로스트립 패치 절단 모양에 따른 입력 임피던스 평가)

  • Kim, Tae Yong;Lee, Jong-Ig
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.480-481
    • /
    • 2015
  • General microstrip patch antenna has small bandwidth. If corner of a patch antenna is properly cutted to be triangular shape, then input impedance of patch antenna should be varied. Using this characteristic wideband patch antenna can be implemented. In this paper, wideband microstrip patch antenna operating in 2.4GHz ISM band is investigated through tracking variation of input impedance corresponding to cutting shape of patch antenna.

  • PDF

Compensation of a Squint Free Phased Array Antenna System using Artificial Neural Networks

  • Kim, Young-Ki;Jeon, Do-Hong;Park, Chiyeon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.4 no.2
    • /
    • pp.182-186
    • /
    • 2004
  • This paper describes an advanced compensation for non-linear functions designed to remove steering aberrations from phased array antennas. This system alters the steering command applied to the antenna in a way that the appropriate angle commands are given to the array steering software for the antenna to point to the desired position instead of squinting. Artificial neural networks are used to develop the inverse function necessary to correct the aberration. Also a straightforward antenna steering function is implemented with neural networks for the 9-term polynomials of forward steering function. In all cases the aberration is removed resulting in small RMS angular errors across the operational angle space when the actual antenna position is compared with the desired position. The use of neural network model provides a method of producing a non-linear system that can correct antenna performance and demonstrates the feasibility of generating an inverse steering algorithm.

A Dual-Band Gap-Filler Antenna Design with a Phi-Shaped Slot

  • Park, Sang Yong;Park, Jong Kweon
    • Journal of electromagnetic engineering and science
    • /
    • v.15 no.2
    • /
    • pp.111-114
    • /
    • 2015
  • In this paper, we have proposed dual-band Phi-shaped slot gap filler antenna for satellite internet service applications. Some properties of the antenna such as return loss, radiation pattern, and gain have been simulated and measured. The proposed antenna has a Phi-shaped slot on the circular patch and is fabricated on the TLX-9 substrate. The radius of the circular patch is 25 mm, and it has a coaxial feeding structure. The dual-band Phi-shaped slot gap filler antenna has high-gain, small-size, simple-structure, and good radiation patterns at each band. The operating frequency band can be tuned by adjusting the length AL and FL of the Phi-shaped slot.