• 제목/요약/키워드: Smad4 protein

검색결과 43건 처리시간 0.02초

단삼이 수지상 세포의 유전자 발현에 미치는 영향 (Effects of Salviae miltiorrhizae Radix Extract on Gene Expression of Dendritic cells.)

  • 강문여;김종한;최정화;박수연
    • 한방안이비인후피부과학회지
    • /
    • 제21권3호
    • /
    • pp.52-68
    • /
    • 2008
  • Objectives and Methods : Salviae miltiorrhizae Radix (SMR) promotes blood circulation to remove blood stasis, cools the blood to relieve carbuncle, clears away heat from the heart and tranquilizes the mind. This study was designed to investigate the effects of SMR on immuno-potentiative action in terms of changes in the genetic profile of dendritic cells (DC) using by microarray analysis. Results and Conclusion: In this experiment, treatments with more than 250 ${\mu}g/ml$ upto 1000 ${\mu}g/ml$ of SMR elevated the proliferation rates of DC. Microscopic observations confirmed the tendency on proliferation rates. Expression levels of genes related with cellular methabolic process, cell communication, and macromolecule metabolic process were elevated by treatment with SMR in comparison of functional distribution in a Biological Process. In molecular functions, expression levels of genes related with receptor activation, nucleotide binding and nucleic acid binding were elevated. In cellular components, expression levels of genes related to cellular membrane-bound organelles were elevated. In addition, expression levels of genes related to Wnt signalling pathways and the glycerophospholipid metabolism were elevated through analysis using pathway analysis between up-and down-regulated genes in cells treated with SMR. Finally, genes related to JAK2, GRB2, CDC42, SMAD4, B2M, FOS and ESRI located the center of Protein interaction network of genes through treatment with SMR.

  • PDF

Substrate-immobilized bone morphogenic protein-7 peptides on titanium surface support the expression of extracellular matrix proteins

  • 김영준;정찬길;최득철
    • Journal of Periodontal and Implant Science
    • /
    • 제36권3호
    • /
    • pp.627-637
    • /
    • 2006
  • 이 연구는 rh BMP-7-immobilized substrates에 대한 백서 태자 두개관 세포의 반응을 석회화 결절 측정, 알카리 효소 분석, 역전사 중합반응 및 단백질 분석등으로 평가하여 다음과 같은 결과를 얻었다. 1. 배양 14일 째, 석회화 결절 형성율을 측정한 결과, rh BMP-7-immobilized substrates에서 대조군과 비교하여 더 많은 석회화 결절을 형성하였다. 2. 배양 7일에 염기성 인산 분해효소 활성도는 rh BMP-7-immobilized substrates에서 대조군에 비해 효소 활성도가 유의하게 높았다. 3. 역전사 중합반응의 결과에서 BSP 와 OCN 유전자 발현은 대조군보다 더 현저하였다. 4. 단백질 분석에서 rh BMP-7-immobilized substrates와 대조군 모두 Smad 1,5,8 단백질의 인산화를 활성화시키지 못했다. 이상의 결과 rh BMP-7-immobilized substrates는 백서 태자 두개관세포가 조골세포로의 분화와 석회화를 유도하며 따라서 rh BMP-7-immobilized substrates는 임프란트 주변의 골 형성에 유용하리라 사료된다.

Kalkitoxin attenuates calcification of vascular smooth muscle cells via RUNX-2 signaling pathways

  • Saroj K Shrestha;Se-Woong Kim;Yunjo Soh
    • Journal of Veterinary Science
    • /
    • 제24권5호
    • /
    • pp.69.1-69.11
    • /
    • 2023
  • Background: Kalkitoxin (KT) is an active lipopeptide isolated from the cyanobacterium Lyngbya majuscula found in the bed of the coral reef. Although KT suppresses cell division and inflammation, KT's mechanism of action in vascular smooth muscle cells (VSMCs) is unidentified. Therefore, our main aim was to investigate the impact of KT on vascular calcification for the treatment of cardiovascular disease. Objectives: Using diverse calcification media, we studied the effect of KT on VSMC calcification and the underlying mechanism of this effect. Methods: VSMC was isolated from the 6 weeks ICR mice. Then VSMCs were treated with different concentrations of KT to check the cell viability. Alizarin red and von Kossa staining were carried out to examine the calcium deposition on VSMC. Thoracic aorta of 6 weeks mice were taken and treated with different concentrations of KT, and H and E staining was performed. Real-time polymerase chain reaction and western blot were performed to examine KT's effect on VSMC mineralization. Calcium deposition on VSMC was examined with a calcium deposition quantification kit. Results: Calcium deposition, Alizarin red, and von Kossa staining revealed that KT reduced inorganic phosphate-induced calcification phenotypes. KT also reduced Ca++-induced calcification by inhibiting genes that regulate osteoblast differentiation, such as runtrelated transcription factor 2 (RUNX-2), SMAD family member 4, osterix, collagen 1α, and osteopontin. Also, KT repressed Ca2+-induced bone morphogenetic protein 2, RUNX-2, collagen 1α, osteoprotegerin, and smooth muscle actin protein expression. Likewise, Alizarin red and von Kossa staining showed that KT markedly decreased the calcification of ex vivo ring formation in the mouse thoracic aorta. Conclusions: This experiment demonstrated that KT decreases vascular calcification and may be developed as a new therapeutic treatment for vascular calcification and arteriosclerosis.

The effect of melatonin on cardio fibrosis in juvenile rats with pressure overload and deregulation of HDACs

  • Wu, Yao;Si, Feifei;Luo, Li;Jing, Fengchuan;Jiang, Kunfeng;Zhou, Jiwei;Yi, Qijian
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제22권6호
    • /
    • pp.607-616
    • /
    • 2018
  • The effect of melatonin on juveniles with cardio fibrosis is poorly understood. We investigated whether HDACs participate in the anti-fibrotic processes regulated by melatonin during hypertrophic remodeling. Abdominal aortic constriction (AAC) was employed in juvenile rats resulting in pressure overload-induced ventricular hypertrophy and melatonin was subsequently decreased via continuous light exposure for 5 weeks after surgery. AAC rats displayed an increased cross-sectional area of myocardial fibers and significantly elevated collagen deposition compared to sham-operated rats, as measured by HE and Masson Trichrome staining. Continuous light exposure following surgery exacerbated the increase in the cross-sectional area of myocardial fibers. The expression of HDAC1, HDAC2, HDAC3, HDAC4 and HDAC6 genes were all significantly enhanced in AAC rats with light exposure relative to the other rats. Moreover, the protein level of $TNF-{\alpha}$ was also upregulated in the AAC light exposure groups when compared with the sham. However, Smad4 protein expression was unchanged in the juveniles' hearts. In contrast, beginning 5 weeks after the operation, the AAC rats were treated with melatonin (10 mg/kg, intraperitoneal injection every evening) or vehicle 4 weeks, and sham rats were given vehicle. The changes in the histological measures of cardio fibrosis and the gene expressions of HDAC1, HDAC2, HDAC3, HDAC4 and HDAC6 were attenuated by melatonin administration. The results reveal that melatonin plays a role in the development of cardio fibrosis and the expression of HDAC1, HDAC2, HDAC3, HDAC4 and HDAC6 in cardiomyocytes.

바위수국으로부터 분리한 플라보노이드 배당체의 광노화 예방 효과 (Anti-photoaging Effects of Flavonoid glycosides from shizophragma hydrangeoides)

  • 김성천;오소연;현혜진;정용환;함영민
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2022년도 추계학술대회
    • /
    • pp.25-25
    • /
    • 2022
  • 피부 노화는 피부와 피부 지지층 등의 광범위한 퇴행 과정을 말한다. 피부 노화의 원인은 흡연, 공해, 스트레스 등이 있지만, 그 중에서도 자외선(ultra violet, UV) 조사가 가장 큰 요인으로 꼽힌다. 반복적인 자외선 조사에 의해 진행되는 피부노화를 광노화라고 하며 그 가장 큰 특징으로는 콜라겐 섬유와 엘라스틴의 감소로 야기되는 주름을 들 수 있다. 본 연구에서는 제주에서 채집한 바위수국의 추출물 및 분획물의 항산화 및 자외선으로 인한 피부노화 예방(anti-photoaging) 효능을 확인하고, 활성물질을 분리하여 광노화 예방 효능과 그 메커니즘을 확인하였다. 실험에 사용된 바위수국은 범의귀과의 덩굴성 식물로 바위면이나 나무줄기 등에 붙어서 자라며, 한국(제주, 울릉도)과 일본에 분포한다. 바위수국 추출물과 분획물에서 총 페놀 함량. 총 플라보이드 함량, DPPH 및 ABTS 라디칼소거 활성의 항산화 실험 결과, 부탄올과 에틸아세테이트 분획층에서 강력한 항산화 활성이 관찰되었다. 또한 UVA를 조사한 인간 진피 섬유아세포 (human dermal fibroblast, HDF)데 대한 콜라겐 분해효소인 matrix metalloproteinase-1(MMP-1) 생성 억제 활성을 확인한 결과, 부탄올 분획층이 세포 생장 저해 없이 가장 우수한 효능이 확인되었다. 따라서 부탄올 분획층에서 주요 성분 분리 실험을 수행하여 총 4개의 화합물을 분리하였다; Chlorogenic acid (1), Quercetin-3-O-glucosyl-(1-2)-rhamnoside (2), Quercetin-3-O-xylosyl-(1-2)-rhamnoside (3), Quercitrin (4). 분리한 4개의 물질의 MMP-1 생성 억제 활성을 비교한 결과 화합물 2가 세포독성 없이 MMP-1 생성 억제 효능이 우수하였고, 이후 화합물 2의 광노화 예방 효능과 그 메커니즘을 확인하였다. 화합물 2는 MMP-1의 생성을 억제할 뿐만 아니라 procollagen type I의 생성을 증가시켰으며, MMP-1 생성에 관여하는 mitogen-activated protein kinase (MAPK)/activator protein-1 (AP-1) 신호전달경로를 하향 조절하며, 콜라겐 생성과 관련된 Transforming growth factor-β (TGF-β)/Smad 신호전달경로를 상향 조절하여 UVA에 의한 광노화 예방에 효능을 나타내었다. 이러한 결과들을 바탕으로, 바위수국은 항노화(anti-aging) 기능성 화장품 및 이너뷰티 기능성 식품 소재로 개발이 가능할 것으로 기대된다.

  • PDF

Effects of Parafibromin Expression on the Phenotypes and Relevant Mechanisms in the DLD-1 Colon Carcinoma Cell Line

  • Zhao, Shuang;Sun, Hong-Zhi;Zhu, Shi-Tu;Lu, Hang;Niu, Zhe-Feng;Guo, Wen-Feng;Takano, Yasuo;Zheng, Hua-Chuan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권7호
    • /
    • pp.4249-4254
    • /
    • 2013
  • Background: Parafibromin is a protein encoded by the HRPT2 (hyperparathyroidism 2) oncosuppressor gene and its down-regulated expression is involved in pathogenesis of parathyroid, breast, gastric and colorectal carcinomas. This study aimed to clarify the effects of parafibromin expression on the phenotypes and relevant mechanisms of DLD-1 colon carcinoma cells. Methods: DLD-1 cells transfected with a parafibromin-expressing plasmid were subjected to examination of phenotype, including proliferation, differentiation, apoptosis, migration and invasion. Phenotype-related proteins were measured by Western blot. Parafibromin and ki-67 expression was detected by immunohistochemistry on tissue microarrays. Results: The transfectants showed higher proliferation by CCK-8, better differentiation by electron microscopy and ALP activity and more apoptotic resistance to cisplatin by DNA fragmentation than controls. There was no difference in early apoptosis by annexin V, capase-3 activity, migration and invasion between DLD-1 cells and their transfectants. Ectopic parafibromin expression resulted in down-regulated expression of smad4, MEKK, GRP94, GRP78, $GSK3{\beta}$-ser9, and Caspase-9. However, no difference was detectable in caspase-12 and -8 expression. A positive relationship was noted between parafibromin and ki-67 expression in colorectal carcinoma. Conclusions: Parafibromin overexpression could promote cell proliferation, apoptotic resistance, and differentiation of DLD-1 cells.

Molecular Cloning, Characterization and Expression Analysis of an ILF2 Homologue from Tetraodon nigroviridis

  • Wang, Hui-Ju;Shao, Jian-Zhong;Xiang, Li-Xin;Shen, Jia
    • BMB Reports
    • /
    • 제39권6호
    • /
    • pp.686-695
    • /
    • 2006
  • Interleukin-2 enhancer binding factor 2 (ILF2) was reported to regulate transcription of interleukin-2 (IL-2), a central cytokine in the regulation of T-cell responses. This property of ILF2 was well characterized in human and mammals, but little is known in bony fish. In this paper, an ILF2 homologue was cloned and well characterized from Tetraodon nigrovirid is for the further investigation of the function of ILF2 in bony fish. The full-length Tetraodon ILF2 cDNA was 1380 bp in size and contained an open reading frame (ORF) of 1164 bp that translates into a 387 amino-acid peptide with a molecular weight of 42.9 kDa, a 5' untranslated region (UTR) of 57 bp, and a 3' UTR of 159 bp containing a poly A tail. The deduced peptide of Tetraodon ILF2 shared an overall identity of 58%~93% with other known ILF2 sequences, and contained two N-glycosylation sites, two N-myristoylation sites, one RGD cell attachment sequence, six protein kinase C phosphorylation sites, one amino-terminal RGG-rich single-stranded RNA-binding domain, and a DZF zinc-finger nucleic acid binding domain, most of which were highly conserved through species compared. Constitutive expression of Tetraodon ILF2 was observed in all tissues examined, including gill, gut, head kidney, spleen, liver, brain and heart. The highest expression was detected in heart, followed by liver, head kidney and brain. Stimulation with LPS did not significantly alter the expression of Tetraodon ILF2. Gene organization analysis showed that the Tetraodon ILF2 gene have fifteen exons, one more than other known ILF2 genes in human and mouse. Genes up- and down-stream from the Tetraodon ILF2 were Rpa12, Peroxin-11b, Smad4, Snapap and Txnip homologue, which were different from that in human and mouse.

Isopsoralen Induces Differentiation of Prechondrogenic ATDC5 Cells via Activation of MAP Kinases and BMP-2 Signaling Pathways

  • Li, Liang;Eun, Jae-Soon;Nepal, Manoj;Ryu, Jae-Ha;Cho, Hyoung-Kwon;Choi, Bo-Yun;Soh, Yun-Jo
    • Biomolecules & Therapeutics
    • /
    • 제20권3호
    • /
    • pp.299-305
    • /
    • 2012
  • Endochondral bone formation is the process by which mesenchymal cells condense to become chondrocytes, which ultimately form new bone. The process of chondrogenic differentiation and hypertrophy is critical for bone formation and as such is regulated by many factors. In this study, we aimed to indentify novel factors that regulate chondrogenesis. We investigated the possible role of isopsoralen in induction of chondrogenic differentiation in clonal mouse chondrogenic ATDC5 cells. Isopsoralen treatment stimulated the accumulation of cartilage nodules in a dose-dependent manner. Further, ATDC5 cells treated with isopsoralen were stained more intensely with Alcian blue than control cells, suggesting that isopsoralen increases the synthesis of matrix proteoglycans. Similarly, isopsoralen markedly induced the activation of alkaline phosphatase activity compared with control cells. Isopsoralen enhanced the expressions of chondrogenic marker genes such as collagen II, collagen X, OCN, Smad4 and Sox9 in a time-dependent manner. Furthermore, isopsoralen induced the activation of extracellular signal-regulated kinase (ERK) and p38 MAP kinase, but not that of c-jun N-terminal kinase (JNK). Isopsoralen significantly enhanced the protein expression of BMP-2 in a time-dependent manner. PD98059 and SB 203580, inhibitors of ERK and p38 MAPK, respectively, decreased the number of stained cells treated with isopsoralen. Taken together, these results suggest that isopsoralen mediates a chondromodulating effect by BMP-2 or MAPK signaling pathways, and is therefore a possible therapeutic agent for bone growth disorders.

Fermented Protaetia brevitarsis Larvae Ameliorates Chronic Ethanol-Induced Hepatotoxicity in Mice via AMPK and TLR-4/TGF-β1 Pathways

  • Hyo Lim Lee;Jong Min Kim;Min Ji Go;Seung Gyum Joo;Tae Yoon Kim;Han Su Lee;Ju Hui Kim;Jin-Sung Son;Ho Jin Heo
    • Journal of Microbiology and Biotechnology
    • /
    • 제34권3호
    • /
    • pp.606-621
    • /
    • 2024
  • This study evaluated the hepatoprotective effect of fermented Protaetia brevitarsis larvae (FPB) in ethanol-induced liver injury mice. As a result of amino acids in FPB, 18 types of amino acids including essential amino acids were identified. In the results of in vitro tests, FPB increased alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) activities. In addition, FPB treatment increased cell viability on ethanol- and H2O2-induced HepG2 cells. FPB ameliorated serum biomarkers related to hepatoxicity including glutamic oxaloacetic transaminase, glutamine pyruvic transaminase, total bilirubin, and lactate dehydrogenase and lipid metabolism including triglyceride, total cholesterol, high-density lipoprotein cholesterol, and low-density lipoprotein cholesterol. Also, FPB controlled ethanol metabolism enzymes by regulating the protein expression levels of ADH, ALDH, and cytochrome P450 2E1 in liver tissue. FPB protected hepatic oxidative stress by improving malondialdehyde content, reduced glutathione, and superoxide dismutase levels. In addition, FPB reversed mitochondrial dysfunction by regulating reactive oxygen species production, mitochondrial membrane potential, and ATP levels. FPB protected ethanol-induced apoptosis, fatty liver, and hepatic inflammation through p-AMP-activated protein kinase and TLR-4/NF-κB signaling pathways. Furthermore, FPB prevented hepatic fibrosis by decreasing TGF-β1/Smad pathway. In summary, these results suggest that FPB might be a potential prophylactic agent for the treatment of alcoholic liver disease via preventing liver injury such as fatty liver, hepatic inflammation due to chronic ethanol-induced oxidative stress.

Systemic Approaches Identify a Garlic-Derived Chemical, Z-ajoene, as a Glioblastoma Multiforme Cancer Stem Cell-Specific Targeting Agent

  • Jung, Yuchae;Park, Heejoo;Zhao, Hui-Yuan;Jeon, Raok;Ryu, Jae-Ha;Kim, Woo-Young
    • Molecules and Cells
    • /
    • 제37권7호
    • /
    • pp.547-553
    • /
    • 2014
  • Glioblastoma multiforme (GBM) is one of the most common brain malignancies and has a very poor prognosis. Recent evidence suggests that the presence of cancer stem cells (CSC) in GBM and the rare CSC subpopulation that is resistant to chemotherapy may be responsible for the treatment failure and unfavorable prognosis of GBM. A garlic-derived compound, Z-ajoene, has shown a range of biological activities, including anti-proliferative effects on several cancers. Here, we demonstrated for the first time that Z-ajoene specifically inhibits the growth of the GBM CSC population. CSC sphere-forming inhibition was achieved at a concentration that did not exhibit a cytotoxic effect in regular cell culture conditions. The specificity of this inhibitory effect on the CSC population was confirmed by detecting CSC cell surface marker CD133 expression and biochemical marker ALDH activity. In addition, stem cell-related mRNA profiling and real-time PCR revealed the differential expression of CSC-specific genes, including Notch, Wnt, and Hedgehog, upon treatment with Z-ajoene. A proteomic approach, i.e., reverse-phase protein array (RPPA) and Western blot analysis, showed decreased SMAD4, p-AKT, 14.3.3 and FOXO3A expression. The protein interaction map (http://string-db.org/) of the identified molecules suggested that the AKT, ERK/p38 and $TGF{\beta}$ signaling pathways are key mediators of Z-ajoene's action, which affects the transcriptional network that includes FOXO3A. These biological and bioinformatic analyses collectively demonstrate that Z-ajoene is a potential candidate for the treatment of GBM by specifically targeting GBM CSCs. We also show how this systemic approach strengthens the identification of new therapeutic agents that target CSCs.