• Title/Summary/Keyword: SmFeN

Search Result 44, Processing Time 0.037 seconds

IMPROVEMENT EFFECTS OF ELECTROCHEMICAL STABILITY OF MAGNETIC MATERIALS FOR PROSTHETIC DENTISTRY (치과보철용 자석재료의 전기화학적 안정성 개선효과)

  • Kwack, Jong-Ha;Oh, Sang-Ho;Choe, Han-Cheol;Chung, Chae-Heon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.5
    • /
    • pp.628-641
    • /
    • 2006
  • Statement of problem: Dental magnetic materials have been applied to removable prosthetic appliances, maxillofacial prostheses, obturator and dental implant but they still have some problems such as low corrosion resistance in oral environments. Purpose: To increase the corrosion resistance of dental magnetic materials, surfaces of Sm-Co and Nd-Fe-B based magnetic materials were plated with TiN and sealed with stainless steels. Materials and methods : Surfaces of Sm-Co and Nd-Fe-B based magnetic materials were plated with TiN and sealed with stainless steels, and then three kinds of electrochemical corrosion test were performed in 0.9% NaCl solution; potentiodynamic, potentiostatic, and electrochemical impedance test. From this study, corrosion behavior, amount of elements released, mean average surface roughness values, the changing of retention force, and magnetic force values were measured comparing with control group of non-coated magnetic materials. Results: The values of surface roughness of TiN coated Sm-Co and TiN coated Nd-Fe-B based magnetic materials were lower than those of non coated Sm-Co and Nd-Fe-B alloy. From results of potentiodynamic test, the passive current density of TiN coated Sm-Co alloy were smaller than those of TiN coated Nd-Fe-B alloy and non coated alloys in 0.9% NaCl solution. From results of potentiostatic and electrochemical impedance test, the surface stability of the TiN coated Sm-Co alloy was more drastically increased than that of the TiN coated Nd-Fe-B alloy and non-coated alloy. The retention and magnetic force after and before corrosion test did not change in the case of TiN coated magnetic alloy sealed with stainless steel. Conclusion: It is considered that the corrosion problem and improvement for surface stability of dental magnetic materials could be solved by ion plating with TiN on the surface of dental magnetic materials and by sealing with stainless steels.

Magnetic properties of Mn54Al46C2.44/Sm2Fe17N3 and Mn54Al46C2.44/Fe65Co35 composites

  • Qian, Hui-Dong;Si, Ping-Zhan;Lim, Jung Tae;Kim, Jong-Woo;Park, Jihoon;Choi, Chul-Jin
    • Journal of the Korean Physical Society
    • /
    • v.73 no.11
    • /
    • pp.1703-1707
    • /
    • 2018
  • Ferromagnetic ${\tau}-phase$ $Mn_{54}Al_{46}C_{2.44}$ particles were synthesized, and its composites with commercial $Sm_2Fe_{17}N_3$ and synthesized $Fe_{65}Co_{35}$ powders were fabricated. Smaller grain size than the single domain size of the $Mn_{54}Al_{46}C_{2.44}$ without obvious grain boundaries and secondary phases is the origin for the low intrinsic coercivity. It was confirmed that the magnetic properties of the $Mn_{54}Al_{46}C_{2.44}$ can be enhanced by magnetic exchange coupling with the hard magnetic $Sm_2Fe_{17}N_3$ and soft magnetic $Fe_{65}Co_{35}$. The high degrees of the exchange coupling were verified by calculating first derivative curves. Thermo-magnetic stabilities of the composites from 100 to 400 K were measured and compared. It was demonstrated that the $Mn_{54}Al_{46}C_{2.44}$ based composites containing $Sm_2Fe_{17}N_3$ and $Fe_{65}Co_{35}$ could be promising candidates for future permanent magnetic materials with the proper control of purity, magnetic properties, etc.

Structure and Magnetic Properties of Mechanically Alloyed Sm(Fe,Ti)$_7$ Compounds and Their Nitrides

  • Kim, H.T.
    • Journal of Magnetics
    • /
    • v.6 no.2
    • /
    • pp.57-60
    • /
    • 2001
  • Mechanically alloyed $TbCu_7 -type \;Sm_{12.5}Fe_{87.5-x}Ti_x$(x=0, 2.5, 5, 7.5),and their nitrides have been studied systematically by X-ray diffraction, A.C. initial susceptibility, and pulsed magnetization measurement. In this series, the volume expansion by nitriding is 5.6%~7.3%, and the increment of the Curie temperature is in the range of 21$0^{\circ}C$~35$0^{\circ}C$. With increasing Ti content, the remanence decreases linearly due to the substitution of non-magnetic Ti, and the coercivity decreases rapidly from 34.6 kA/cm (43.5 kOe) for $\chi$=0 to 14.3 kA/cm (18 kOe) for $\chi$=7.5. In the $Sm_{12.5}Fe_{87.5-x}Ti_xN_y$ series, the best magnetic properties were obtained from .7Ti7Ny series, the best magnetic properties were obtained from $Sm_{12.5}Fe_{87.5}N_y$($\chi$=0) with $_iH_c$=34.6 kA/cm (43.5 kOe), $B_r=0.75 \;T, \;and (BH)_{max}=113.8 kJ/m^3$(10.9 MGOe).

  • PDF

Study on (n, α) reactions for the production of 51Cr, 89Sr, 99Tc, 131I, 133Xe, 137Cs and 153Sm radioisotopes used in nuclear medicine

  • Hallo M. Abdullah;Ali H. Ahmed
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3352-3358
    • /
    • 2023
  • Nuclear medicine seems to be a decent choice of medicine in the recent decade. The radioactive isotopes 51Cr, 89Sr, 99Tc, 131I, 133Xe, 137Cs and 153Sm are extremely essential in nuclear medicine. The excitation functions of the 54Fe (n, α) 51Cr, 92Zr (n, α) 89Sr, 102Rh (n, α) 99Tc, 134Cs (n, α) 131I, 136Ba (n, α) 133Xe, 140La (n, α) 137Cs and 156Gd (n, α) 153Sm reactions were calculated in this study using the EMPIRE 3.2.3 and TALYS 1.95 nuclear codes. Additionally, the cross sections at 14-15 MeV were calculated using empirical formulae and the experimental data. The computer codes were compared to the experimental data and Empirical formulas as well as the evaluated data (TENDL 2021, JENDL 3.3, JENDL 5, JEFF 3.3, EAF 2010, CENDL 3.1, CENDL 3.2, ROSFOND 2010, FENDL 3.2 b, and BROND 3.1).