• Title/Summary/Keyword: Slurry flow efficiency

Search Result 38, Processing Time 0.025 seconds

A Study on $SO_2$Removal in Flue Gas by Semidry Flue Gas Desulfurization Method (반건식 배연탈황법에 의한 연소 페가스 중 $SO_2$제거에 관한 연구)

  • Song, Ho-Cheol;Lee, Yun-Gi;Park, Jin-Won
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.14 no.4
    • /
    • pp.273-280
    • /
    • 1998
  • The investigation on the removal of 502 gas fro.In flue gas which causes serious air pollution was made by using a semi dry flue gas desulfurization method. Experiments were carried out as a function of process variables which would affect SO2 removal efficiency. Process variables inclilded SO2 inlet concentration, inlet temperature of simulated flue gas, sorbent weight fraction, and volume flow rate of sorbent slurry. In this study, used sorbent was Ca(OH), and simulated flue gas was prepared by mixing pure SO2 gas with air. Experimental conditions were varied at 140~18$0^{\circ}C$ of inlet temperature of the simulated flue gas, 500~2000ppm of inlet SO2 concentration, 0.4~1.0% of sorbent concentration, and 10~25 mL/min of flow rate of sorbent slurry. Among process variables, inlet concentration of SO2 was found to be the most significant factor to affect SO2 removal efficiency. The concentration of Ca(OH2) had a lower effect on SO2 removal than SO2 inlet concentration removal amount was 0.108, 0.141, 0.153 g SO2/g Ca(OH)2 respectively- As 200 mmol of HNO3 was added into slurry to improve removal efficiency, initial pH was maintained and solubility of slurry increased, so that removal efficiency elevated. Adding over 200 mmol of HNO3 into slurry caused removal efficiency lower. Therefore it could be concluded the optimum was 200 mmol of HNO3 input.

  • PDF

Flue Gas Sulfur Dioxide Removal Performance of a Bench-Scale Spray Absorption/Drying Reactor (실험실적 규모의 분무흡수건조반응기의 배출가스 중 아황산가스 처리성능 연구)

  • 동종인;구우회;임대현
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.12 no.4
    • /
    • pp.449-457
    • /
    • 1996
  • The main purpose of this study was to investigate sulfur dioxide removal performance of flue gas desulfurization system utilizing a Spray Absorption/Drying Reactor. In this system, the size of droplets was considered the most significant factor and tested using a PDA system. Lime slurry flow rate, operating temperature, calcium/sulfur (Ca/S) ratio and applied air pressure were selected as major operation variables and tested/analyzed in terms of system performance. The results are as follows. 1. The $SO_2$ removal efficiencies were 49%, 74%, 85% for Ca$(OH)_2$ slurry flow rate of 10, 20, 30 ml/min, which implies that the increase of slurry flow rate improves removal efficiency. The optimum slurry flow rate in this study was, however, considered 20 ml/min because of constraints of system troubles and absorbent utilization. 2. As Ca/S ratio increased, $SO_2$ removal efficiency was observed to increase. 3. As air pressure, at the atomizing nozzole, increased from 3 to 5 $kg/cm^2, SO_2$ removal efficiency increased from 74% to 80%, because of droplet size reduction due to pressure increase during atomizing process and the increase of surface area, helping mass transfer between gas and liquid phase.

  • PDF

Combined bi-borehole technology for grouting and blocking of flowing water in karst conduits: Numerical investigation and engineering application

  • Pan, Dongdong;Zhang, Yichi;Xu, Zhenhao;Li, Haiyan;Li, Zhaofeng
    • Geomechanics and Engineering
    • /
    • v.29 no.4
    • /
    • pp.391-405
    • /
    • 2022
  • A newly proposed grouting simulation method, the sequential diffusion solidification method was introduced into the numerical simulation of combined bi-borehole grouting. The traditional, critical and difficult numerical problem for the temporal and spatial variation simulation of the slurry is solved. Thus, numerical simulation of grouting and blocking of flowing water in karst conduits is realized and the mechanism understanding of the combined bi-borehole technology is promoted. The sensitivity analysis of the influence factors of combined bi-borehole grouting was investigated. Through orthogonal experiment, the influences of proximal and distal slurry properties, the initial flow velocity of the conduit and the proximal and distal slurry injection rate on the blocking efficiency are compared. The velocity variation, pressure variation and slurry deposition phenomenon were monitored, and the flow field characteristics and slurry outflow behavior were analyzed. The interaction mechanism between the proximal and distal slurries in the combined bi-borehole grouting is revealed. The results show that, under the orthogonal experiment conditions, the slurry injection rate has the greatest impact on blocking. With a constant slurry injection rate, the blocking efficiency can be increased by more than 30% when using slurry with weak time-dependent viscosity behavior in the distal borehole and slurry with strong time-dependent viscosity behavior in the proximal borehole respectively. According to the results of numerical simulation, the grouting scheme of "intercept the flow from the proximal borehole by quick-setting slurry, and grout cement slurry from the distal borehole" is put forward and successfully applied to the water inflow treatment project of China Resources Cement (Pingnan) Limestone Mine.

A Study on Improvement of Slurry Filter Efficiency in the CMP Process (CMP 공정에서 슬러리 필터의 효율 개선에 관한 연구)

  • Park, Sung-Woo;Seo, Yong-Jin;Seo, Sang-Yong;Lee, Woo-Sun;Kim, Chang-Il;Chang, Eui-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.05b
    • /
    • pp.34-37
    • /
    • 2001
  • As the integrated circuit device shrinks to smaller dimensions, chemical mechanical polishing (CMP) process was required for the global planarization of inter-metal dielectric (IMD) layer with free-defect. However, as the inter-metal dielectrics (IMD) layer gets thinner, micro-scratches are becoming as major defects. Micro-scratches are generated by agglomerated slurry, solidified and attached slurry in pipe line of slurry supply system. To prevent agglomerated slurry particle from inflow, we installed 0.5${\mu}m$ POU (point of use) filter, which is depth-type filter and has 80% filtering efficiency for the $1.0{\mu}m$ size particle. In this paper, we studied the relationship between defect generation and pad count to understand the exact efficiency of the slurry filtration, and to find out the appropriate pad usage. Our preliminary results showed that it is impossible to prevent defect-causing particles perfectly through the depth-type filter. Thus, we suggest that it is necessary to optimize the flow rate of slurry to overcome depth type filters weak-point, and to install the high spray of de-ionized Water (DIW) with high pressure.

  • PDF

Entrained-Flow Coal Water Slurry Gasification (분류층 습식 석탄가스화 기술)

  • Ra, HoWon;Lee, SeeHoon;Yoon, SangJun;Choi, YoungChan;Kim, JaeHo;Lee, JaeGoo
    • Korean Chemical Engineering Research
    • /
    • v.48 no.2
    • /
    • pp.129-139
    • /
    • 2010
  • Coal gasification process, which had developed originally to convert coal from hydrogen and carbon monoxide, has used and developed in many countries because of environmental advantages such as carbon dioxide storage, decrease of pollutants and so on. Generally entrained-flow gasification process using pulverized coal under $75{\mu}m$ is used in Integrated Gas Combined Cycle(IGCC) because of easy scale up and high efficiency of energy conversion. Especially entrained-flow gasifers with coal water slurry have been used in many applications due to its fully developed technologies. In this paper, several technologies for coal-water slurry gasification that involves slurry preparation, burner, gasifier, slag melting and numerical simulation for plant design and operation were investigated. Entrained-flow gasification with coal water slurry can be used for synfuel production, SNG, chemicals as well as IGCC. To develop hybrid gasification process and use different types of coal, it is necessary to develop new technologies that will increase efficiency of the process.

An application of the electrostatic spray technology to increase scrubbing efficiency of SO$_{2}$ emitted from thermal systems (열시스템에서 생성된 SO$_{2}$ 가스의 배출저감을 위한 정전기 분무 원리의 응용)

  • Jeong, Jae-Yun;Byeon, Yeong-Cheol;Hwang, Jeong-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.8
    • /
    • pp.1068-1076
    • /
    • 1997
  • Emission control of acid exhaust gases from coal-fired power plants and waste incinerators has become an increasing concern of both industries and regulators. Among those gaseous emissions, SO$_{2}$ has been eliminated by a Spray Drying Absorber (SDA) system, where the exhaust gas is mixed with atomized limestone-water slurry droplets and then the chemical reaction of SO$_{2}$ with alkaline components of the liquid feed forms sulfates. Liquid atomization is necessary because it maximizes the reaction efficiency by increasing the total surface area of the alkaline components. An experimental study was performed with a laboratory scale SDA to investigate whether the scrubbing efficiency for SO$_{2}$ reduction increased or not with the application of a DC electric field to the limestone-water slurry. For a selected experimental condition SO$_{2}$ concentrations exited from the reactor were measured with various applied voltages and liquid flow rates. The applied voltage varied from -10 to 10 kV by 1 kV, and the volume flow rate of slurry was set to 15, 25, 35 ml/min which were within the range of emission mode. Consequently, the SO$_{2}$ scrubbing efficiency increased with increasing the applied voltage but was independent of the polarity of the applied voltage. For the electrical and flow conditions considered a theoretical study of estimating average size and charge of the atomized droplets was carried out based on the measured current-voltage characteristics. The droplet charge to mass ratio increased and the droplet diameter decreased as the strength of the applied voltage increased.

Flow pattern analysis and a study on formation of slurry ice in the reversing flow (역전 유동층 내의 유동해석 및 슬러리아이스 생성에 관한 연구)

  • Oh, Cheol;Choi, Young-Gyu
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2011.06a
    • /
    • pp.202-202
    • /
    • 2011
  • Thermal energy storage(TES) cooling system using cheaper electricity of off-peak time has been applied to relief a significant portion of the peak demand of electricity during the daytime in summer. Slurry ice type thermal energy storage cooling system is one kind of more efficient ice-thermal energy storage cooling system than Ice-on-Coil type or Encapsulated type TES cooling system, even though, which are more popular TES system. This study is experimented to observe flow pattern and formation of slurry ice in reversing flow to improve efficiency of heat transfer between fluid and freezing tube.

  • PDF

Improvement of Pad Lifetime using POU (Point of Use) Slurry Filter and High Spray Method of De-Ionized Water (POU 슬러리 필터와 탈이온수의 고분사법에 의한 패드수명의 개선)

  • 박성우;김상용;서용진
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.9
    • /
    • pp.707-713
    • /
    • 2001
  • As the integrated circuit device shrinks to smaller dimensions, chemical mechanical polishing (CMP) process was requirdfo the global planarization of inter-metal dielectric (IMD) layer with free-defect. However, as the IMD layer gest thinner, micro-scratches are becoming as major defects. However, as the IMD layer gets thinner, micro-scratches are becoming as major defects. Micro-scratches are generated by agglomerated slurry, solidified and attached slurry in pipe line of slurry supply system. To prevent agglomerated slurry particle from inflow, we installed 0.5${\mu}{\textrm}{m}$ point of use (POU) filter, which is depth-type filter and has 80% filtering efficiency for the 1.0${\mu}{\textrm}{m}$ size particle. In this paper, we studied the relationship between defect generation and polished wafer counts to understand the exact efficiency fo the slurry filteration, and to find out the appropriate pad usage. Our experimental results showed that it sis impossible to prevent defect-causing particles perfectly through the depth-type filter. Thus, we suggest that it is necessary to optimize the slurry flow rate, and to install the high spray bar of de-ionized water (DIW) with high pressure, to overcome the weak-point of depth type filter.

  • PDF

Development of point-of-use filter evaluation method using chemical mechanical planarization slurry (Chemical mechanical planarization 슬러리에 사용되는 point-of-use 필터의 평가 방법 개발)

  • Jang, Sunjae;Kulkarni, Atul;Kim, Hyeong-U;Kim, Taesung
    • Particle and aerosol research
    • /
    • v.12 no.4
    • /
    • pp.145-150
    • /
    • 2016
  • During the chemical mechanical planarization (CMP) process, slurry that comprises abrasive particles can directly affect the CMP performance and quality. Mainly, the large particles in the slurry can generate the defects on the wafer. Thus, many kinds of filters have been used in the CMP process to remove unwanted over-sized particles. Among these filters, the point-of-use (POU) filter is used just before the slurry is supplied onto the CMP pad. In the CMP research field, analysis of the POU filter has been relatively exceptional, and previous studies have not focused on the standardized filtration efficiency (FE) or filter performance. Furthermore, conventional evaluation methods of filter performance are not appropriate for POU filters, as the POU filter is not a membrane type, but is instead a depth type roll filter. In order to accurately evaluate the POU filter, slurry FE according to particle size was measured in this study. Additionally, a CMP experiment was conducted with filtered slurry to demonstrate the effects of filtered slurry on CMP performance. Depending on the flow rate and the filter retention size, the FE according to particle size was different. When the small and large particles have different FEs, the total filtration efficiency (TFE) can still have a similar value. For this reason, there is a need to measure the FE with respect to the particle size to verify the effects of the POU filter on the CMP process.

Study of Hydraulic Transport of Sand-water Mixture by a Dredging Test Loop (준설시험루프를 이용한 모래-물 혼합물 배송에 관한 연구)

  • Lee, Man-Soo;Park, Young-Ho;Lee, Young-Nam;Chung, Choong-Ki
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1504-1511
    • /
    • 2005
  • The efficiency of the hydraulic transport of soil-water mixtures is an important factor in designing and operating a pump & pipeline system and is directly connected with dredging cost and working period. However, the hydraulic transport mechanism in the slurry flow inside the pipeline such as frictional losses, specific energy consumption, deposition velocity has not been well established. In this study a new dredging test loop system was designed and built. It is composed of a slurry pipeline with pipes of different diameters, a centrifugal slurry pump and a diesel engine connected with the slurry pump. and equipped with modern measuring facilities that enable to measure all important characteristics of a transportation system. The objective of this paper is to discuss the efficiency of the hydraulic transport of the Jumoonjin sand-water mixtures in the dredging test loop and to present simple equations induced from the test results of the loop that can express the transport product and the transport productivity.

  • PDF