• 제목/요약/키워드: Slurry density

검색결과 207건 처리시간 0.024초

전기영동적층법을 통한 판상 알루미나 입자와 전기영동 수지의 배향 유무기 복합체 제조 및 물성평가 (Preparation and Characterization of a Layered Organic-inorganic Composite by the Electrophoretic Deposition of Plate-shaped Al2O3 Particles and Electrophoretic Resin)

  • 박희정;임형미;최성철;김영희
    • 한국세라믹학회지
    • /
    • 제50권6호
    • /
    • pp.460-465
    • /
    • 2013
  • Plate-shaped inorganic particles are coated onto a stainless steel substrate by the electrophoretic deposition of a precursor slurry which includes the inorganic particles of $Al_2O_3$ and polymer resin in mixed solvents to mimic the abalone shell structure, which is a composite of plate-shaped inorganic particles and organic interlayer binding materials with a layered orientation. The process parameters of the electrophoretic deposition include the voltage, coating time, and conductivity of the substrate. In addition, the suspension parameters are the particle size, concentration, viscosity, conductivity, and stability. We prepared an organic-inorganic composite coating with a high inorganic solid content by arraying the plate-shaped $Al_2O_3$ particles and electrophoretic resin via an electrophoretic deposition method. We analyzed the effect of the slurry composition and the electrophoretic deposition process parameters on the physical, mechanical and thermal properties of the coating layer, i.e., the thickness, density, particle orientation, Young's modulus and thermogravimetric analysis results.

Oil Agglomeration Process에 의한 무연탄 슬러리의 탈수에 관한 연구(제1보) (A study on the removal of the water from the anthracite slurry by Oil Agglomeration Prosess(partI))

  • 권이동;신강호;조동성
    • 자원리싸이클링
    • /
    • 제2권2호
    • /
    • pp.39-44
    • /
    • 1993
  • 어룡탄광에서 산출되는 저질인 무연탄 슬러리를 Oil agglomeration 처리법으로 탈수하여 다음과 같은 결과를 얻었다. 저질 무연탄은 기름과 응집체(COM)를 형성하여 물과의 비중차이에 의해서 약 80%까지 분리되고 이때 COM을 만드는 각각 석유, 경유 또는 중유의 첨가량은 시료량의 10%정도이다. 무연탄에서 가연성분을 회수하고 회분을 제거할 수 있는 능력은 기름의 첨가율, 광액 농도, 광립의 입도, 교반시간, 교반강도에 크게 영향을 받는다. 최적조건인 상태에서 가연물질의 회수율은 약 95%까지 증가되었고, 회분의 함유율은 30%에서 13.5%로 감소되었다.

  • PDF

Consumable Approaches of Polysilicon MEMS CMP

  • Park, Sung-Min;Jeong, Suk-Hoon;Jeong, Moon-Ki;Park, Boum-Young;Jeong, Hae-Do;Kim, Hyoung-Jae
    • Transactions on Electrical and Electronic Materials
    • /
    • 제7권4호
    • /
    • pp.157-162
    • /
    • 2006
  • Chemical-mechanical polishing (CMP), one of the dominant technology for ULSI planarization, is used to flatten the micro electro-mechanical systems (MEMS) structures. The objective of this paper is to achieve good planarization of the deposited film and to improve deposition efficiency of subsequent layer structures by using surface-micromachining process in MEMS technology. Planarization characteristic of poly-Si film deposited on thin oxide layer with MEMS structures is evaluated with different slurries. Patterns used for this research have shapes of square, density, line, hole, pillar, and micro engine part. Advantages of CMP process for MEMS structures are observed respectively by using the test patterns with structures larger than 1 urn line width. Preliminary tests for material selectivity of poly-Si and oxide are conducted with two types of silica slurries: $ILD1300^{TM}\;and\;Nalco2371^{TM}$. And then, the experiments were conducted based on the pretest. A selectivity and pH adjustment of slurry affected largely step heights of MEMS structures. These results would be anticipated as an important bridge stone to manufacture MEMS CMP slurry.

고분자 복제 템플릿 방법을 이용하여 제조된 다공성 탄화규소의 미세구조 특성 (Characterization of Microstructure on Porous Silicon Carbide Prepared by Polymer Replica Template Method)

  • 이윤주;김수룡;김영희;신동근;원지연;권우택
    • 한국세라믹학회지
    • /
    • 제51권6호
    • /
    • pp.539-543
    • /
    • 2014
  • Foam type porous silicon carbide ceramics were fabricated by a polymer replica method using polyurethane foam, carbon black, phenol resin, and silicon powder as raw materials. The influence of the C/Si mole ratio of the ceramic slurry and heat treatment temperature on the porous silicon carbide microstructure was investigated. To characterize the microstructure of porous silicon carbide ceramics, BET, bulk density, X-ray Powder Diffraction (XRD), and Scanning Electron Microscope (SEM) analyses were employed. The results revealed that the surface area of the porous silicon carbide ceramics decreases with increased heat treatment temperature and carbon content at the $2^{nd}$ heat treatment stage. The addition of carbon to the ceramic slurry, which was composed of phenol resin and silicon powder, enhanced the direct carbonization reaction of silicon. This is ascribed to a consequent decrease of the wetting angles of carbon to silicon with increasing heat treatment temperature.

Co 질산염과 TiO(OH)2 슬러리를 이용한 초미립 TiC-5%Co 제조 및 WC-Co 분말과의 혼합에 따른 소결체 특성 (Synthesis of Ultrafine TiC-5%Co Powder by Using Co Nitrate and TiO(OH)2 Slurry and Evaluation of Sintered Materials Prepared by Mixing WC-Co)

  • 홍성현;김병기
    • 한국분말재료학회지
    • /
    • 제15권2호
    • /
    • pp.107-113
    • /
    • 2008
  • Ultrafine TiC-5%Co powders were synthesized by spray drying of aqueous solution of TiO$(OH)_2$ slurry and cobalt nitrate, followed by calcination and carbothermal reaction. The oxide powders with carbon powder was reduced and carburized at $900^{\circ}C{\sim}1250^{\circ}C$ under hydrogen atmosphere. During reduction, CO gas was mainly evolved by reducing reaction of oxides. Ultrafine TiC-5%Co powders were easily formed by carbothermal reaction at $1250^{\circ}C$ due to using ultrafine powders as raw materials. The ultrafine WC-TiC-Co alloy prepared by sintering of mixed powder of ultrafine WC-13%Co powder and ultrafine TiC-5%Co powder has higher sintered density and mechanical properties than WC-TiC-Co alloy prepared by commercial WC, TiC and Co powders.

Simulation analysis on the separation characteristics and motion behavior of particles in a hydrocyclone

  • Xu, Yanxia;Tang, Bo;Song, Xingfu;Sun, Ze;Yu, Jianguo
    • Korean Journal of Chemical Engineering
    • /
    • 제35권12호
    • /
    • pp.2355-2364
    • /
    • 2018
  • We evaluated the effect of particle size and associated dynamics on a hydrocyclone separation process in order to understand the movement of the particle trajectories inside the hydrocyclone via numerical analysis, with particles of acid hydrolysis residues discharged in $TiO_2$ production via the sulfate method as a case study. The values obtained from the numerical simulation were successfully compared with those from experimental tests in the literature, allowing a description of the dynamics of the particles, their acting forces, and their relevant properties together with separation efficiency. The results showed that particle motion is jointly controlled by the drag force, the pressure gradient force and the centrifugal force. With increasing particle size, the influence of the drag force is weakened, whereas that of the centrifugal force and pressure gradient is strengthened. Factors including particle density, slurry viscosity, and inlet slurry flow rate also contribute to a clear and useful understanding of particle motion behavior in the hydrocyclone as a method for improving the separation efficiency.

2단 분류층 가스화기에서 합성가스 생성을 위한 석탄 슬러리 가스화에 대한 수치 해석적 연구 (Numerical simulation of gasification of coal-water slurry for production of synthesis gas in a two stage entrained gasifier)

  • 서동균;이선기;송순호;황정호
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 추계학술대회 논문집
    • /
    • pp.417-423
    • /
    • 2007
  • Oxy-gasification or oxygen-blown gasification, enables a clean and efficient use of coal and opens a promising way to CO2 capture. The coal gasification process of a slurry feed type, entrained-flow coal gasifier was numerically predicted in this paper. The purposes of this study are to develop an evaluation technique for design and performance optimization of coal gasifiers using a numerical simulation technique, and to confirm the validity of the model. By dividing the complicated coal gasification process into several simplified stages such as slurry evaporation, coal devolatilization, mixture fraction model and two-phase reactions coupled with turbulent flow and two-phase heat transfer, a comprehensive numerical model was constructed to simulate the coal gasification process. The influence of turbulence on the gas properties was taken into account by the PDF (Probability Density Function) model. A numerical simulation with the coal gasification model is performed on the Conoco-Philips type gasifier for IGCC plant. Gas temperature distribution and product gas composition are also presented. Numerical computations were performed to assess the effect of variation in oxygen to coal ratio and steam to coal ratio on reactive flow field. The concentration of major products, CO and H2 were calculated with varying oxygen to coal ratio (0.2-1.5) and steam to coal ratio(0.3-0.7). To verify the validity of predictions, predicted values of CO and H2 concentrations at the exit of the gasifier were compared with previous work of the same geometry and operating points. Predictions showed that the CO and H2 concentration increased gradually to its maximum value with increasing oxygen-coal and hydrogen-coal ratio and decreased. When the oxygen-coal ratio was between 0.8 and 1.2, and the steam-coal ratio was between 0.4 and 0.5, high values of CO and H2 were obtained. This study also deals with the comparison of CFD (Computational Flow Dynamics) and STATNJAN results which consider the objective gasifier as chemical equilibrium to know the effect of flow on objective gasifier compared to equilibrium. This study makes objective gasifier divided into a few ranges to study the evolution of the gasification locally. By this method, we can find that there are characteristics in the each scope divided.

  • PDF

저온소성 마이크로파 유전체 세라믹스 복합체의 Tape Casting특성 (The Characterizations of Tape Casting for Low Temperature Sintered Microwave Ceramics Composite)

  • 이우석;김창환;하문수;정순종;송재성;류봉기
    • 한국세라믹학회지
    • /
    • 제42권2호
    • /
    • pp.132-139
    • /
    • 2005
  • 마이크로파 유전체 세라믹스 $BaO-Nd_{2}O_3-TiO_{2}(BNT)$계 상용분말과 PbO-base의 결정화 유리프릿 복합체를 출발원료로 하여 테입 케스팅법으로 그린시트를 제초하기 위해 첨가유기물의 조성 변화에 따른 슬러리의 분산특성 및 유동특성 그리고 최종그린시트의 그린/소결밀도 변화를 연구하였다. 분산제량의 증가는 분산에 유효하였으나, 일정량 이상이 첨가되면 분산을 저해하는 요인으로 작용하였으며 복합체 분말에 1.75 wt$\%$의 fish oil을 첨가하였을 때 분산특성이 가장 우수하였다 준비된 모든 조성의 슬러리에서 의가소성거동(shear thinning)이 나타났고 파우더, 바인더 그리고 유기물의 전체 함량이 증가할수록 상대점도는 증가하는 경향을 나타내었다. 복합체 분말과 용매의 비율 65 : 35, 결합제는 6 wt$\%$, 가소제는 3 wt$\%$에서 테이프의 특성이 가장 우수하였다. 이때 슬러리의 점도는 677cps, 그린/소결밀도는 $3.3g/cm^3,\;5.56g/cm^3$로 각각 나타났다.

양이온성 지방산아민 벌키화제를 이용한 저밀도 종이 제조 (3) - 펄프 고해도 및 벌키화제 처리 농도에 따른 영향 - (Manufacture of Low Density Paper by Cationic Fatty Acid Amine Bulky Promotor Treatment (3) - Effect of Pulp Beating Degree and Bulky Promotor Concentration -)

  • 남윤석;최경화;김해란;조준형
    • 펄프종이기술
    • /
    • 제48권1호
    • /
    • pp.111-118
    • /
    • 2016
  • The effects of pulp beating degree and bulky promotor concentration on the properties of handsheet including a bulk and strength have been investigated during manufacturing of low density paper (high bulk paper) with cationic fatty acid bulky promotor. It was found that paper bulk increased with increasing cationic fatty acid bulky agent concentration, while tensile strength decreased. On the other hand the opacity of handseets also increased with increasing cationic fatty acid bulky agent concentration, while brightness decreased slightly. With increasing pulp beating degree, paper bulk as well as tensile strength increased, while opacity decreased. Brightness did not show a significant difference with increasing pulp beating degree. The highest bulk and strength values were observed when 1.5% (SwBKP) and 2% (HwBKP) of bulky promotor was treated into the 450 mL CSF pulp slurry.

종이 도공용 라텍스의 계면(界面) 및 유동특성(流動特性)에 관한 연구(硏究) (Interfacial and Flow Properties of Latices for Paper Coating)

  • 이용규
    • Journal of the Korean Wood Science and Technology
    • /
    • 제22권1호
    • /
    • pp.85-90
    • /
    • 1994
  • The flow properties of binder latices for paper coating were investigated, together with dynamic viscoelastic properties of latex films and electron micrographs of latices, under various conditions. The amphoteric latex, binder pigment latex and anionic latex were used in this work. The amphoteric latex has both anionic and cationic functional group on its surface. The binder-pigment with a core-shell structure has dual functions : plastic pigment and binder. The low shear viscosity of binder latices and clay slurry were measured with Brookfield vis cometer. At low-shear rates. the viscosity decreased with increasing particle size of latex. On the amphoteric latex surface, the carboxyl groups are assumed to be fully dissociated over the region of pH 9~12, but the density of negative groups seems to be increased because of the gradual decrease in the degree of dissociation of amino groups. Since the apparent particle size of latex increases with surface charge, the electroviscous effect can be observed. On the anionic latex surface, the charge density is assumed to be nearly constant above pH 8. However, below pH 8 the coagulation of particles could be observed probably because of the decrease in the charge density.

  • PDF