• Title/Summary/Keyword: Slurry TBM

Search Result 29, Processing Time 0.018 seconds

A fundamental study of slurry management for slurry shield TBM by sea water influence (해수의 영향에 따른 이수식 TBM의 슬러리 관리를 위한 기초적 연구)

  • Kim, Dae-Young;Lee, Jae-won;Jung, Jae-Hoon;Kang, Han-Byul;Jee, Sung-Hyun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.3
    • /
    • pp.463-473
    • /
    • 2017
  • Bentonite swells when it comes into contact with water and makes it a viscous fluid. Thus it is widely used in civil engineering works for waterproofing. Utilizing the properties of bentonite, the slurry shield TBM supports excavated face with pressurized slurry as well as transporting excavated muck. When bentonite is in contact with seawater, due to the change of double layer thickness, its expandability and viscosity are lowered. This may cause problems for excavation stability and muck discharge due to the increase of sea water inflow when Slurry TBM is used under sea water conditions. In this study, the change of slurry condition caused by the inflow of sea water during tunnel excavation with Slurry TBM was investigated and a slurry management guideline was proposed. For this purpose, a laboratory test was carried out based on the slurry management criterions applied in the field, and a method applicable to the field where sea water is affected has been proposed.

Effect of seawater on the applicability of a slurry shield TBM (해수가 슬러리 쉴드 TBM 공법 적용성에 미치는 영향)

  • Ryu, Young-Moo;Kim, Hae-Mahn;Kim, Do-Hyung;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.2
    • /
    • pp.243-256
    • /
    • 2019
  • Formation of filter cake with little slurry penetration into the tunnel face ground is an essential factor to successfully apply the slurry shield tunnel boring machine (TBM) for tunnelling work. However, when the bentonite slurry is in contact with seawater, it is not easy to guarantee the filter cake formation due to decrease of the swelling volume and viscosity of the slurry. In this study, in order to evaluate the effect of the seawater on the applicability of the slurry shield TBM method, the slurry injection tests were carried out with the variation of seawater percentage contained in the slurry samples as well as the variation of soil types. And then, the effect of these two factors on the slurry clogging phenomena was theoretically and experimentally figure out. As a result, it was found that the value of the slurry clogging criteria (SCC) indicating the applicability of the slurry shield TBM significantly decreases up to 67% as the percentage of seawater increases from 0% up to 20%. In addition, it was found to be necessary to take into account both the characteristics of slurry and soil types together when judging the applicability of the slurry shield TBM method by assessing the slurry penetration characteristics that will occur during tunnelling work.

A study on the discharge pipes wear of slurry shield TBM in rock strata (암반구간의 슬러리 쉴드 TBM의 버력운송 파이프 마모에 관한 연구)

  • Pak, Yeong Taek;Kim, Taek Kon;Ko, Tae Young
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.1
    • /
    • pp.57-70
    • /
    • 2017
  • In this study, we investigated the wear measurement methods for slurry pipe applied in the field of mining and oil sand industry and theoretical equations related to the prediction of wear in slurry pipe through literature review. Average daily wear rate and wear rate per excavated distance were determined from slurry discharge pipe thickness measurement data periodically measured at the actual slurry shield TBM site in Singapore. The wear rate of slurry pipe for Bukit Timah Granite was obtained. The wear rates for G (V) grade and mixed zone were 1.5 times higher than that of G (I) to G (IV) grade. Slurry pipe wear rate tends to increase in proportion to the slurry discharge velocity. The optimal slurry pipe replacement or rotation frequency can be estimated through the selection of the pipe wear rate considering geological condition and the reasonable pipe management thickness.

A study on the face pressure control and slurry leakage possibility using shield TBM model test (축소 모형실험을 통한 토피조건별 이수압식 쉴드 TBM의 챔버압 및 이수분출 가능성 평가)

  • Koh, Sungyil;Shin, Hyunkang;La, You-Sung;Jung, Hyuksang
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.3
    • /
    • pp.277-291
    • /
    • 2020
  • Shield TBM is a tunnelling method that has a wider range of applications in the poor ground condition compared to conventional tunnels (Drill and Blast). Currently, a 13.3 m large-diameter slurry shield TBM is preparing for construction to pass under the Han River. Shield TBM is divided into slurry and EPB shield TBM, and management items during construction are different depending on each characteristic. In this paper, the equipment type, origin, application case and trouble case were analyzed for slurry shield TBM, which is mainly constructed in soft ground. In addition, 2D and 3D model tests were conducted on the condition of soil depth for the possibility of slurry leakage into front of the equipment, with appropriate chamber pressure. Based on this paper, it proposed to provide basic and reference data for proper excavation surface pressure and chamber pressure during construction of slurry shield TBM under soft ground conditions, and proposed measures to minimize stability and environmental decline due to slurry ejection.

Infiltration behaviour of the slurry into tunnel face during slurry shield tunnelling in sandy soil (사질성 지반에서 이수식 쉴드 TBM 적용시 굴진면으로의 이수 침투특성에 대한 해석적 고찰)

  • Roh, Byoung-Kuk;Koh, Sung-Yil;Choo, Seok-Yeon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.14 no.3
    • /
    • pp.261-275
    • /
    • 2012
  • This paper presents numerical analysis of the mud cake infiltration behaviour which is influenced tunnel face stability during excavation by slurry shield TBM. This analysis method can make useful data to select proper shield TBM type and to set up the construction plan. But effective analysis did not proposed until now. In this paper, we carried out numerical analysis using by $PFC^{2D}$ fluid coupling simulation which is suitable for sandy soil modelling. As a analysis result, we checked that the slurry infiltration behaviour varied with soil permeability and slurry characteristic(specific weight, viscosity etc). This analysis method is helpful safety excavation through anticipating the proper slurry viscosity at the design stage and verifying the slurry quality at initial excavation stage.

An Experimental Study on Shield TBM Tunnel Face Stability in Soft Ground (연약지반에서의 쉴드 TBM 굴착시 막장면 안정성 평가를 위한 실험적 연구)

  • Kim, Yong-Man;Lee, Sang-Duk;Choo, Seok-Yeon;Koh, Sung-Yil
    • Journal of the Korean Society for Railway
    • /
    • v.16 no.1
    • /
    • pp.47-51
    • /
    • 2013
  • In this study, we carried out an experimental shield TBM excavation model test using a down-scale device in soft clay, to understand tunnel-face stability properties in relation to changes in slurry pressure. We performed five tests according to tunnel depth (0.5D, 0.75D, 1.0D, 1.25D, 1.5D), and compared theoretical tunnel-face pressure with model test results. The range in theoretical tunnel-face slurry pressure ($P_{min}{\leq}P_{slurry\;pressure}{\leq}P_{max}$), which is determined by earth pressure and water level, was very similar to the model test result. This result was due to the more isotropic condition of the soft clay ground, than of rocky ground.

A study for recycling plan of excavated soil and filter cake of slurry shield TBM for road construction (도로공사 이수식 쉴드 TBM 굴착토 및 필터케이크 재활용방안 연구)

  • Nam, Sung-min;Park, Seo-young;Ahn, Byung-cheol
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.6
    • /
    • pp.599-615
    • /
    • 2022
  • In order to excavate underground tunnel most safely such as Han river, the slurry shield TBM method is applied to cope with face of high water pressure for many metro projects. In downtown subway project most of excavated soil is discharged externally whereas in road construction excavated soil is used as filling materials so it becomes important factor for success of the project. After excavated soil, weathered rock and soft rock are discharged with bentonite through discharge pipe to slurry treatment plant then those soils are separated in separation plant according to those size. Fine grained soil has been discarded together with filter cake but it is not toxic and can be mixed with coarse aggregate in proper ratio so this study is performed to find use of qualified filling material to meet quality standard. Therefore, in this study, legal standards and quality standards for the utilization of excavated soil of the slurry shield TBM method were examined and test was conducted to derive recycling way for filter cake and aggregate. And a plan for using it as a filling material for road construction was derived. Because bentonite is a clay composed of montmorillonite, and the excavated soil in the tunnel is also non-toxic, disposal of this material can waste social cost so it is expected to be helpful in the underground space development project that carries out the TBM project by recycling it as a valuable resource.

A study on the evaluation method of blow-out and segment lining buoyancy stability of a slurry shield TBM (쉴드TBM 이수분출 및 세그먼트라이닝 부력 안정성 평가방법 연구)

  • Jang, Yoon-Ho;Kim, Hong-Joo;Shin, Young-Wan;Chung, Hyuk-Sang
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.5
    • /
    • pp.375-393
    • /
    • 2022
  • This study was deal with blow-out and buoyancy stability evaluation method for slurry shield TBM. When applying a slurry shield TBM for the construction of a shallow tunnel under river or sea, the stability of slurry blow-out and segment lining buoyancy should be evaluated. However, there is a problem in that the currently applied theoretical formula is somewhat complicated, making it inconvenient to calculate in practice. In this study, some simple charts were proposed to easily evaluate the stability of slurry blow-out and segment lining buoyancy. In addition, the buoyancy safety factor of segment lining using the strength reduction method was evaluated and compared with the buoyancy safety factor based on the theoretical formula. The buoyancy safety factor by the theoretical formula was evaluated to be rather small, and it was confirmed that it was on the safe side. The simplified charts for the evaluation of slurry blow-out and buoyancy stability presented in this study are expected to be usefully utilized in the planning and design of undersea tunnels.