DOI QR코드

DOI QR Code

A study on the discharge pipes wear of slurry shield TBM in rock strata

암반구간의 슬러리 쉴드 TBM의 버력운송 파이프 마모에 관한 연구

  • Received : 2017.01.13
  • Accepted : 2017.01.27
  • Published : 2017.01.31

Abstract

In this study, we investigated the wear measurement methods for slurry pipe applied in the field of mining and oil sand industry and theoretical equations related to the prediction of wear in slurry pipe through literature review. Average daily wear rate and wear rate per excavated distance were determined from slurry discharge pipe thickness measurement data periodically measured at the actual slurry shield TBM site in Singapore. The wear rate of slurry pipe for Bukit Timah Granite was obtained. The wear rates for G (V) grade and mixed zone were 1.5 times higher than that of G (I) to G (IV) grade. Slurry pipe wear rate tends to increase in proportion to the slurry discharge velocity. The optimal slurry pipe replacement or rotation frequency can be estimated through the selection of the pipe wear rate considering geological condition and the reasonable pipe management thickness.

본 연구에서는 광산이나 오일샌드 등의 분야에서 적용되고 있는 슬러리 파이프 마모량 측정 방법과 슬러리 파이프의 마모량 예측에 관련된 이론식들을 문헌연구를 통해 살펴보고, 실제 싱가포르 슬러리 쉴드 TBM 현장에서 주기적으로 측정한 직선부 슬러리 파이프의 두께 측정 자료로부터 평균 일일 마모율과 굴착거리당 마모율을 산정하였다. Bukit Timah Granite의 풍화등급에 따른 마모율을 구하였는데, 풍화토에 가까운 G (V) 등급 지반 및 G (III)/G (V)의 복합지반에서의 마모율이 G(I)~G (IV)의 암반 등급지반에 비해서 1.5배 높게 나타났다. 슬러리 파이프 마모율은 슬러리 운송속도에 비례하여 증가하는 경향을 보였다. 향후 지반특성 별 파이프 마모율과 합리적인 관리두께 선정을 통하여 보다 최적화된 슬러리 파이프의 교체 및 회전 주기를 산정할 수 있을 것으로 판단된다.

Keywords

References

  1. Bergeron, P. (1950), "Similarity conditions for erosion caused by liquids carrying solids in suspension. Application to centrifugal pump impellers", La Houille Blanche, 5, Spec. No. 2, pp. 716-729.
  2. BHRA (2015), "Slurry Handling Course: Pumping & Pipeline Design", pp. 102-115.
  3. Cooke, R., Johnson, G. (1999), "Laboratory apparatus for evaluating slurry pipeline wear", 14th Int. Conf. on Slurry Handling and Pipeline Transport, pp. 38-42.
  4. Duhme, R., Tatzki, T. (2015), "Designing TBMs for subsea tunnels", Journal of Korean Tunnelling and Underground Space Association, Vol. 17, No. 6, pp. 587-596. https://doi.org/10.9711/KTAJ.2015.17.6.587
  5. Durand, R., Condolios, E. (1952), "Colloquium on the Hydraulic Transport of Coal", National Coal Board, London, paper IV, pp. 39-52.
  6. Henday, G. (1988), "A comparison of commercial pipe materials intended for the hydraulic transport of solids", BHRA Report RR2988.
  7. Huggett, P.G., Walker, C.I. (1988), "Development of a wear test to simulate slurry erosion", Proc of Hydrotransport 11, Paper K1, pp. 495-505.
  8. Karabelas, A.J. (1978), "An experimental study of pipe erosion by turbulent slurry flow", Proc. Hydrotransport 5, Paper E2, pp. 15-24.
  9. Kawashima, T., Yagi, T., Ise, T., Sato, E., Washimi, H., Yokogawa, A. (1978), "Wear of pipes for hydraulic transport of solids", Proc. Hydrotransport 5, Paper E3, pp. 25-44.
  10. Miller, J.E. (1974), "Miller Number", Chem Engng, 22, pp. 103-106.
  11. Oroskar, A.R., Turian, R.M (1980), "The critical velocity in pipeline flow of slurries", AIChE Journal, 26(4), pp. 550-558. https://doi.org/10.1002/aic.690260405
  12. Park, H., Oh, J.Y., Chang, S., Lee, S. (2016), "Case study of volume loss estimation during slurry tbm tunnelling in weathered zone of granite rock", Journal of Korean Tunnelling and Underground Space Association, Vol. 18, No. 1, pp. 61-74. https://doi.org/10.9711/KTAJ.2016.18.1.061
  13. Roh, B.K., Koh, S.Y., Choo, S.Y. (2012), "Infiltration behaviour of the slurry into tunnel face during slurry shield tunnelling in sandy soil", Journal of Korean Tunnelling and Underground Space Association, Vol. 14, No. 3, pp. 261-275. https://doi.org/10.9711/KTAJ.2012.14.3.261