• Title/Summary/Keyword: Slurry, Abrasive

Search Result 166, Processing Time 0.022 seconds

A Study on the Oxide CMP Characteristics According to the $CeO_2$ Abrasive Adding (세리아 연마제 첨가에 따른 산화막 CMP 특성 연구)

  • Han, Sang-Jun;Lee, Young-Kyun;Park, Sung-Woo;Seo, Yong-Jin;Lee, Woo-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.542-542
    • /
    • 2008
  • 본 논문에서는 기존에 상용화된 슬러리에 비해 새로운 혼합 연마제 슬러리의 우수성을 입증하고, 최적화 된 공정기술을 연구의 기반으로 활용하고자 Silica slurry에 $CeO_2$ 연마제를 혼합하여, 어떠한 연마 특성을 나타내는지 알아보았고, AFM, EDX, XRD, TEM 분석을 통해 그 가능성을 비교 분석하였다.

  • PDF

The Study of ILD CMP Using Abrasive Embedded Pad (고정입자 패드를 이용한 층간 절연막 CMP에 관한 연구)

  • 박재홍;김호윤;정해도
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.1117-1120
    • /
    • 2001
  • Chemical mechanical planarization(CMP) has emerged as the planarization technique of choice in both front-end and back-end integrated circuit manufacturing. Conventional CMP process utilize a polyurethane polishing pad and liquid chemical slurry containing abrasive particles. There have been serious problems in CMP in terms of repeatability and defects in patterned wafers. Since IBM's official announcement on Copper Dual Damascene(Cu2D) technology, the semiconductor world has been engaged in a Cu2D race. Today, even after~3years of extensive R&D work, the End-of-Line(EOL) yields are still too low to allow the transition of technology to manufacturing. One of the reasons behind this is the myriad of defects associated with Cu technology. Especially, dishing and erosion defects increase the resistance because they decrease the interconnection section area, and ultimately reduce the lifetime of the semiconductor. Methods to reduce dishing & erosion have recently been interface hardness of the pad, optimization of the pattern structure as dummy patterns. Dishing & erosion are initially generated an uneven pressure distribution in the materials. These defects are accelerated by free abrasive and chemical etching. Therefore, it is known that dishing & erosion can be reduced by minimizing the abrasive concentration. Minimizing the abrasive concentration by using Ce$O_2$ is the best solution for reducing dishing & erosion and for removal rate. This paper introduce dishing & erosion generating mechanism and a method for developing a semi-rigid abrasive pad to minimize dishing & erosion during CMP.

  • PDF

Aging Effects of Silica Slurry and Oxide CMP Characteristics (실리카 슬러리의 에이징 효과 및 산화막 CMP 특성)

  • 이우선;고필주;이영식;서용진;홍광준
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.2
    • /
    • pp.138-143
    • /
    • 2004
  • CMP (Chemical Mechanical Polishing) technology for global planarization of multilevel interconnection structure has been widely studied for the next generation devices. Among the consumables for CMP process, especially, slurry and their chemical compositions play a very important role in the removal rates and within-wafer non-uniformity (WIWNU) for global planarization ability of CMP process. However, CMP slurries contain abrasive particles exceeding 1 ${\mu}{\textrm}{m}$ size, which can cause micro-scratch on the wafer surface after CMP process. Such a large size particle in these slurries may be caused by particle agglomeration in slurry supply-line. In this work, to investigate the effects of agglomeration on the performance of oxide CMP slurry, we have studied an aging effect of silica slurry as a function of particle size distribution and aging time during one month. We Prepared and compared the self-developed silica slurry by adding of alumina powders. Also, we have investigated the oxide CMP characteristics. As an experimental result, we could be obtained the relatively stable slurry characteristics comparable to aging effect of original silica slurry. Consequently, we can expect the saving of high-cost slurry.

SiC Synthesis by Using Sludged Si Power (폐슬러지 Si 분말을 이용한 SiC 제조)

  • 최미령;김영철;장영철
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.10 no.3
    • /
    • pp.67-71
    • /
    • 2003
  • Sawing silicon ingot with abrasive slurry generates sludge that includes abrasive powders, cutting oil, and silicon powders. The abrasive powders and cutting oil are being separated and reused. Mixing the remained stodged silicon powders with carbon powders and subsequent heat-treatment are conducted to produce silicon carbide. The size of SiC whiskers and powders was smaller than the conventionally grown silicon carbide whiskers that were synthesized by adding micron-size metal impurities. Impurity related mechanism is attributed to the formation of the silicon carbide whiskers, as metal impurities are contained in the stodged silicon powders.

  • PDF

Evaluation on Tungsten CMP Characteristic using Fixed Abrasive Pad with Alumina (알루미나 고정입자패드를 이용한 텅스텐 CMP 특성 평가)

  • 박범영;김호윤;김형재;서헌덕;정해도
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.206-209
    • /
    • 2002
  • The fixed abrasive pad(FAP) has been introduced in chemical mechanical polishing(CMP) field recently. In comparison with the general CMP which uses the slurry including abrasives, FAP takes advantage of planarity. resulting from decreasing pattern selectivity and defects such as dishing due to the reduction of abrasive concentration especially. This paper introduces the manufacturing technique of $Al_2$O$_3$-FAP using hydrophilic polymers with swelling characteristic in water and explains the self.texturing phenomenon. It also focuses on the chemical effects on tungsten film and the FAP is evaluated on the removal rate as a function of chemicals such as oxidizer, catalyst, and acid. The removal rate is achieved up to 1000A1min as about 70 percents of the general one. In the future. the research has a plan of the advanced FAP and chemicals in tungsten CMP considering micro-scratch, life-time, and within wafer non-uniformity.

  • PDF

화학기계적 연마 가공에서의 윤활 특성 해석

  • 박상신;조철호;안유민
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.272-277
    • /
    • 1998
  • Chemical-Mechanical Polishing (CMP) refers to a material removal process done by rubbing a work piece against a polishing pad under load in the presence of chemically active, abrasive containing slurry. CMP process is a combination of chemical dissolution and mechanical action. The mechanical action of CMP involves tribology. The liquid slurry is trapped between the wafer(work piece) and pad(tooling) forming a lubricating film. For the first step to understand material removal rate of the CMP process, the lubricational analyses were done with commercial 100mm diameter silicon wafers to get nominal clearance of the slurry film, roll and pitch angle at the steady state. For this purpose, we calculate slurry pressure, resultant forces and moments at the steady state in the range of typical industrial polishing conditions.

  • PDF

Analysis of the Lubricational Characteristics for Chemical-Mechanical Polishing Process (화학기계적 연마 가공에서의 윤활 특성 해석)

  • 박상신;조철호;안유민
    • Tribology and Lubricants
    • /
    • v.15 no.1
    • /
    • pp.90-97
    • /
    • 1999
  • Chemical-Mechanical Polishing (CMP) refers to a material removal process done by rubbing a work piece against a polishing pad under load in the presence of chemically active, abrasive containing slurry. CU process is a combination of chemical dissolution and mechanical action. The mechanical action of CMP involves tribology. The liquid slurry is trapped between the wafer (work piece) and pad (tooling) forming a lubricating film. For the first step to understand material removal rate of the CMP process, the lubricational analyses were done with commercial 100mm diameter silicon wafers to get nominal clearance of the slurry film, roll and pitch angle at the steady state. For this purpose, we calculate slurry pressure, resultant forces and moments at the steady state in the range of typical industrial polishing conditions.

Effect of Anionic Polyelectrolyte on Alumina Dispersions for Ru Chemical Mechanical Polishing

  • Venkatesh, R. Prasanna;Victoria, S. Noyel;Kwon, Tae-Young;Park, Jin-Goo
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.24.2-24.2
    • /
    • 2011
  • Ru is used as a bottom electrode capacitor in dynamic random access memories (DRAMs) and ferroelectric random access memories (FRAMs). The surface of the Ru needs to be planarized which is usually done by chemical mechanical polishing (CMP). Ru CMP process requires chemical slurry consisting of abrasive particles and oxidizer. A slurry containing NaIO4 and alumina particles is already proposed for Ru CMP process. However, the stability of the slurry is critical in the CMP process since if the particles in the slurry get agglomerated it would leave scratches on the surface being planarized. Thus, in the present work, the stability behavior of the slurry using a suitable anionic polyelectrolyte is investigated. The parameters such as slurry pH, polyelectrolyte concentration, adsorption time and the sequence of addition of chemicals are optimized. The results show that the slurry is stable for longer time at an optimized condition. The polishing behavior of the Ru using the optimized slurry is also investigated.

  • PDF

Oxide CMP Removal Rate and Non-uniformity as a function of Slurry Composition (슬러리의 조성에 따른 산화막 CMP 연마율과 균일도 특성)

  • Ko, Pi-Ju;Lee, Woo-Sun;Choi, Kwon-Woo;Shin, Jae-Wook;Seo, Yong-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05c
    • /
    • pp.41-44
    • /
    • 2003
  • As the device feature size is reduced to the deep sub-micron regime, the chemical mechanical polishing (CMP) technology is widely recognized as the most promising method to achieve the global planarization of the multilevel interconnection for ULSI applications. However, cost of ownership (COO) and cost of consumables (COC) were relatively increased because of expensive slurry. In this paper, the effects of different slurry composition on the oxide CMP characteristics were investigated to obtain the higher removal rate and lower non-uniformity. We prepared the various kinds of slurry. In order to save the costs of slurry, the original slurry was diluted by de-ionized water (DIW). And then, alunima abrasives were added in the diluted slurry in order to promote the mechanical force of diluted slurry.

  • PDF