• Title/Summary/Keyword: Sludge retention time

Search Result 169, Processing Time 0.027 seconds

Biodegradation of a Reactive Dye, Remazol Black B in a UASB Reactor (UASB 반응기를 이용한 반응성 염료 Remazol Black B의 분해)

  • Oh, You-Kwan;Lee, Sung-Ho;Kim, Hyo-Seob;Kim, Yu-Jin;Lee, Sang-Joon;Park, Sung-Hoon
    • KSBB Journal
    • /
    • v.14 no.6
    • /
    • pp.688-695
    • /
    • 1999
  • Biodegradation of the reactive dye, Remazol Black B was investigated in an upflow anaerobic sludge blanket(UASB) reactor. Important parameters studied include dye concentration(20-60 mg/L), glucose concentration as a co-substrate(1,000-3,000 mg/L), hydraulic retention time(3-24 hr), and influent pH(6.0-8.0). Under most conditions tested, the molecules of Black B were degraded readily and completely according to HPLC chromatograms. However, the color removal efficiency based on spectroscopic measurement was always approximately 75%. This suggests that the degradation products have some color intensity corresponding to 25% of the original dye molecules. The maximum influent dye concentration which satisfies the legal discharge limit of color intensity of 400 ADMI was 13 mg/L. and the highest removal rate at this dye concentration was 104 mg/L${\cdot}$day.

  • PDF

A Study of Milk Waste Recycling as an Energy Source and Reduction of Pollution by Anaerobic Digestion (혐기성 소화를 통한 유가공 폐기물의 에너지원으로의 재활용과 오염 감소 방안에 관한 연구)

  • Lim, Samuel;Lim, Hyun-Ji;Jung, Kook-Jin
    • Journal of Dairy Science and Biotechnology
    • /
    • v.27 no.1
    • /
    • pp.13-18
    • /
    • 2009
  • We confirmed methane production and reduction of pollution during anaerobic digestion of milk waste and analyzed the economic potential of using milk waste as a renewable energy source. The milk waste sludge was obtained from the Pasteur milk factory and processed by anaerobic digestion to produce methane. The methane production from two completely mixed tank reactors with an effective capacity of 6 ${\ell}$, 15 days of hydraulic retention time (HRT), and a mid-temperature of $35^{\circ}C$ averaged 4.11 ${\ell}$/day. The total chemical oxygen demand (TCOD) during production decreased from an initial 31,416 mg/${\ell}$ to 13,500 mg/${\ell}$, showing a maximum TCOD removal efficiency of 60%. When HRT was reduced to 12 days, methane production increased by 44% under a high-temperature condition of $55^{\circ}C$. An economic analysis based on these results was applied to a Korean milk factory of typical size and demonstrated that the installation of an anaerobic digester could provide sufficient economic profit.

  • PDF

A Study on Removal of Organism and Nitrogen, Phosphorus in Wastewater Treatment Process Using Nitrifier Activated Reactor (질산화균 활성화조를 이용한 하수처리 공정에서의 유기물 및 질소, 인 제거에 관한 연구)

  • Dong, Young-tak;Seo, Dong-whan;Bae, Yu-jin;Park, Ju-seok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.6
    • /
    • pp.727-735
    • /
    • 2007
  • The use of water by cities is increasing owing to industrialization, the concentration of population, and the enhancement of the standard of living. Accordingly, the amount of waste water is also increasing, and the degree of pollution of the water system is rising. In order to solve this problem, it is necessary to remove organisms and suspended particles as well as the products of eutrophication such as nitrates and phosphates. This study developed a high-end treatment engineering solution with maximum efficiency and lower costs by researching and developing a advanced treatment engineering solution with the use of Biosorption. As a result, the study conducted a test with a $50m^3/day$ Pilot Scale Plant by developing treatment engineering so that only the secondary treatment satisfies the standard of water quality and which provided optimal treatment efficiency along with convenient maintenance and management. The removal of organisms, which has to be pursued first for realizing nitrification during the test period, was made in such a way that there would be no oxidation by microorganisms in the reactor while preparing oxygen as an inhibitor for the growth of microorganism in the course of moving toward the primary settling pond. The study introduced microorganisms in the endogeneous respiration stage to perform adhesion, absorption, and filtering by bringing them into contact with the inflowing water with the use of a sludge returning from the secondary settling pond. Also a test was conducted to determine how effective the microorganisms are as an inner source of carbon. The HRT(Hydraulic Retention Time) in the nitrification tank (aerobic tank) could be reduced to two hours or below, and the stable treatment efficiency of the process using the organisms absorbed in the NAR reactor as a source of carbon could be proven. Also, given that the anaerobic condition of the pre-treatment tank becomes basic in the area of phosphate discharge, it was found that there was excellent efficiency for the removal of phosphate when the pre-treatment tank induced the discharge of phosphate and the polishing reactor induced the uptake of phosphate. The removal efficiency was shown to be about 94.4% for $BOD_5$. 90.7% for $COD_{Cr}$ 84.3% for $COD_{Mn}$, 96.0% for SS, 77.3% for TN, and 96.0% for TP.

Analysis of RCSTP And MWTP Pollutants Treatment Efficiency in Bong-Hwa Gun (봉화군 마을하수도 및 하수처리장의 오염물질 처리 효율 분석)

  • Park, Minsoo;Im, Jiyeol;Gil, Kyungik
    • Journal of Wetlands Research
    • /
    • v.19 no.1
    • /
    • pp.69-79
    • /
    • 2017
  • Protected area of water for supply source is located mostly of rural area in Korea. Normally, sewage treatment system is poor to manage in rural, because low population and density. Rural area need sewage treatment system to supervise supply source of water. In this study, analysis on operation result of 4 RCSTP and MWTP is located at the rural area. Higher concentration of pollutant were inflows to MWTP than RCSTP, and effluent quality standard is satisfaction. However, RCSTP effluent pollutant concentrations was researched higher than MWTP. The organic matter(BOD, COD) were about 5% of a high treatment efficiency to a median. The nutrient(T-N, T-P) were detected Up to high 30%. Also, we analyzed to effect reactor operational parameters on the pollutant treatment efficiency like mixed liquer suspended solid(MLSS), dissolved oxygen(DO) and sludge retention time(SRT). As a result, pollutant treatment efficiency showed fluctuation in accordance with operating condition. Thus, it is necessary to manage the reactor operation condition for management of rural area sewage treatment.

Optimization of Chemical Coagulation for Wastewater Treatment in a Confectionery Factory (제과공장 폐수의 화학적 응집공정 최적화)

  • Keum, Seung-Hae;Chang, Kyu-Sub;Song, Kyung-Bin;An, Gil-Hwan
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.318-323
    • /
    • 1995
  • To improve wastewater treatment in a confectionery factory and to optimize chemical coagulation process, this study was performed. $COD_{Mn}$ and total solid of untreated wastewater were $200{\sim}820ppm\;and\;860{\sim}1350ppm$, respectively. Composition of total solid was sugar 40%, protein 10%, hexane-soluble 20%, and ash 30%. Turbidity at 650 nm and the amount of suspended solid (SS) showed correlation, thus turbidity could be used for the on-line measurement of SS. The most effective combination of coagulants for the removal of $COD_{Mn}$ and SS was that of $Al_2(SO_4)_3\;and\;Ca(OH)_2$. The optimal concentration of $Al_2(SO_4)_3\;and\;Ca(OH)_2$ was 480 ppm and 200 ppm, respectively. Optimal retention time of wastewater for $Al_2(SO_4)_3$ addition $Ca(OH)_2$ addition : flocculation was 2 : 2 : 10 min. Multiple treatment of $Al_2(SO_4)_3:Ca(OH)_2$ overcame coagulation inhibition by gelatin and detergent, and addition of microbial sludge reduced it.

  • PDF

Effect of Operating Conditions of UASB Reactor on Biodegradation of C. I. Reactive Blue 114 (C. I. Reactive Blue 114의 분해에 미치는 혐기성 UASB 반응기 운전조건의 영향)

  • Oh, You-Kwan;Lee, Sung-Ho;Kim, Hyo-Seob;Park, Tae-Joo;Park, Sung-Hoon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.4
    • /
    • pp.619-627
    • /
    • 2000
  • Biodegradation of the C. I. Reactive Blue 114 was investigated in an upflow anaerobic sludge blanket (UASB) reactor. Important parameters studied include dye concentration, the kind and concentration of carbon source, hydraulic retention time (HRT), and influent pH. Glucose was found to be a better co-substrate than the mixture of volatile fatty acids (VFAs), although its concentration did not affect dye removal efficiency in the range of $1000{\sim}3000mg/{\ell}$. When HRT increased from 6 hr to 24 hr, dye removal efficiency increased up to 12 hr and remained almost constant thereafter at about 40%. When influent pH was varied in the range of 6.0~8.0, the effluent pH was varied in the range of 6.8~7.5 with maximum efficiency at pH 7.0. The highest dye removal rate obtained was $52mg/{\ell}{\cdot}day$, while the maximum dye load to meet the discharge limit of color intensity was estimated to be $46mg/{\ell}{\cdot}day$ at HRT of 12 hr and an influent glucose concentration of $2200mg/{\ell}$.

  • PDF

Modelling of Nitrogen Oxidation in Aerated Biofilter Process with ASM3 (부상여재반응기에서 ASM3를 이용한 질산화 공정 모사)

  • Jun, Byonghee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.4
    • /
    • pp.19-25
    • /
    • 2007
  • Process analysis with ASM3 (Activated Sludge Model3) was performed to offer basic data for the optimization of aerated biofilter (ABF) process design and operation. This study was focused on the simulation of the nitrification reaction in ABF which was a part of the advanced nutrient treatment process using bio-adsorption. The ABF process has been developed for the removal of suspended solids and nitrification reaction in sewage. A GPS-X (General Purpose Simualtor-X) was used for the sensitivity analysis and operation assessment. Sensitivity of ASM3 parameters on ABF was analysed and 4 major parameters ($Y_A$, $k_{sto}$, ${\mu}_A$, $K_{A,HN}$) were determined by dynamic simulation using 70 days data from pilot plant operation. The optimized values were 0.14 for $Y_A$, 3.5/d for $k_{sto}$, 2.7/d for ${\mu}_A$ and 1.1 mg/L for $K_{A,HN}$, respectively. Simulation with optimized parameter values were conducted and TN, $NH_4{^+}-N$ and $NO_3{^-}-N$ concentrations were estimated and compared with measured data at the range of 10 min to 4 hrs of hydraulic retention time (HRT). The simulated results showed that optimized parameter values could represent the characteristics of ABF process. Especially, the ABF showed relatively high nitrification rate (60%) under very short HRT of 10 min. As a consequence, the ABF was thought to be successfully used in the site which having high variation of influent loading rate.

  • PDF

Study on Determination of Design Factor of Bioreactor for Sulfate Reduction in Mine Drainage (광산배수 내 황산염 저감을 위한 생물반응기의 설계인자 도출 연구)

  • Kim, Kang-Ho;Kang, Chan-Ung;Kim, Sun-Joon;Kim, Tae-Heok;Ji, Won-Hyun;Jang, Hang-Seok;Park, Hyun-Sung
    • Journal of the Korean Society of Mineral and Energy Resources Engineers
    • /
    • v.55 no.6
    • /
    • pp.527-537
    • /
    • 2018
  • Column tests of a sulfate reducing bacteria (SRB) bioreactor were conducted to determine the design factors for sulfate-rich mine drainage. Various substrates were applied to the bioreactor, including cow manure and its mixture with a mushroom compost, with rice straw and limestone as subsidiary materials. This procedure provided a removal efficiency of up to 82% of the total sulfur with the mixture of cow manure (70%), mushroom compost (10%) and rice straw (20%), and higher efficiencies were observed after 2 days of retention time. In the downflow condition of the flow direction, oxygen supply and re-oxidation of the sulfates occurred, causing a decrease in sulfate removal efficiency. The addition of an inorganic sludge containing heavy metals, which was intended for production of metal-sulfides in the bioreactor, had a negative effect on the long-term operation owing to arsenic release and toxicity to the SRB. The results thus show that a bioreactor using a mixed substrate with cow manure and operating in the downflow direction could reduce sulfates and total dissolved sulfur content; this process confirms the applicability of the SRB bioreactor to sulfate-rich saline drainage.

Water Digital Twin for High-tech Electronics Industrial Wastewater Treatment System (II): e-ASM Calibration, Effluent Prediction, Process selection, and Design (첨단 전자산업 폐수처리시설의 Water Digital Twin(II): e-ASM 모델 보정, 수질 예측, 공정 선택과 설계)

  • Heo, SungKu;Jeong, Chanhyeok;Lee, Nahui;Shim, Yerim;Woo, TaeYong;Kim, JeongIn;Yoo, ChangKyoo
    • Clean Technology
    • /
    • v.28 no.1
    • /
    • pp.79-93
    • /
    • 2022
  • In this study, an electronics industrial wastewater activated sludge model (e-ASM) to be used as a Water Digital Twin was calibrated based on real high-tech electronics industrial wastewater treatment measurements from lab-scale and pilot-scale reactors, and examined for its treatment performance, effluent quality prediction, and optimal process selection. For specialized modeling of a high-tech electronics industrial wastewater treatment system, the kinetic parameters of the e-ASM were identified by a sensitivity analysis and calibrated by the multiple response surface method (MRS). The calibrated e-ASM showed a high compatibility of more than 90% with the experimental data from the lab-scale and pilot-scale processes. Four electronics industrial wastewater treatment processes-MLE, A2/O, 4-stage MLE-MBR, and Bardenpo-MBR-were implemented with the proposed Water Digital Twin to compare their removal efficiencies according to various electronics industrial wastewater characteristics. Bardenpo-MBR stably removed more than 90% of the chemical oxygen demand (COD) and showed the highest nitrogen removal efficiency. Furthermore, a high concentration of 1,800 mg L-1 T MAH influent could be 98% removed when the HRT of the Bardenpho-MBR process was more than 3 days. Hence, it is expected that the e-ASM in this study can be used as a Water Digital Twin platform with high compatibility in a variety of situations, including plant optimization, Water AI, and the selection of best available technology (BAT) for a sustainable high-tech electronics industry.