• Title/Summary/Keyword: Slotting machine

Search Result 10, Processing Time 0.033 seconds

Measurement and verification of pipe cutting power using Labview software (Labview 소프트웨어를 활용한 파이프 절단 파워 측정 및 검증)

  • Jang, Tae-ho;Kim, Youngshik;Jang, Tae-soo;Ryu, Bong-Jo
    • Journal of Digital Contents Society
    • /
    • v.18 no.7
    • /
    • pp.1387-1391
    • /
    • 2017
  • Cutting power estimation can be used to select appropriate actuators in the design process of machine tools. Therefore, accurate estimation of cutting power is an important part of the design process. In this study, pipe cutting power is first calculated theoretically using the slotting cutting power equation and then verified experimentally. In this case, a pipe cutting machine is used to cut two pipes made of different materials. Power consumptions in the motor during pipe cutting are measured by using the embedded software, Labview, and NI hardware. The slotting cutting power equation can thus be confirmed easily comparing theoretically calculated cutting powers with experimentally measured cutting powers. The pipe materials used in this study are SUS304 and AL6N01. The specific cutting power of AL6N01 material is proposed through our cutting experiment. As a result, this cutting power can be used to design machining tools for AL6N01 material.

Magnetic Field Analysis of Permanent Magnet Machine considering Stator Slotting Effect (슬롯팅 효과를 고려한 영구자석 기기의 자계 특성해석)

  • Shin, Kyung-Hun;Choi, Jang-Young;Cho, Han-Wook;Lee, Kang-Su
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.792-793
    • /
    • 2015
  • This paper present a general computation taking into account the slotting effect on the magnetic field due to permanent magnet in surface mounted permanent magnet machine. The analytical method is based on the solution of Laplace's and Poisson's equations (by the separation of variables technique) for each subdomain, i.e., magnets, air gap, and slots. The general solution is obtained using boundary and continuity conditions. The analytical results are in very good agreement with those obtained by the FEA, considering both amplitude and waveform.

  • PDF

Analysis on the High Speed Machine with Diametrically Magnetized Permanent Magnet Rotor considering Slotting Effect (슬롯팅을 고려한 직경방향 착자된 영구자석을 갖는 초고속 기기의 특성해석)

  • Jang Seok Myeong;Choi Jang Young;Yang Hyun Sup;Cho Han Wook
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1064-1066
    • /
    • 2004
  • This paper deals with analysis of a 3-phase high speed machine with diametrically magnetized rotor. The field equations due to magnet and stator windings are established in terms of vector potential and 2-d polar coordinate systems and then, characteristic equation of torque and back emf are derived by using field equations. Finally, this paper predicts open-circuit field, armature reaction field distributions, field distributions on load, torque and back emf distributions from those of equations. Results are compared with predictions from corresponding finite element analyses.

  • PDF

Development of Automatic Feeding System for Corrugate Cardboard Boxes Using TRIZ (트리즈를 이용한 포장 박스용 골판지 자동 급지기 개발)

  • Park, Yong-Taek;Kuk, Kum-Hoan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.2 s.191
    • /
    • pp.95-102
    • /
    • 2007
  • A feeding system is a key component in manufacturing packing boxes such as printing, slotting and gluing. The role of the feeding system is to feed corrugate cardboards which is usually tick and large. So, a special method is necessary to feed corrugate cardboards. This paper suggests a concept and an automatic feeding machine to feed corrugated cardboards using TRIZ, the theory of inventive problem solving. The automatic feeding machine consists of units to regulate the machine according to length and width of corrugated cardboards, a feeding part with a plurality of small rollers, and a sucking part which intensify frictional force between rollers and the lowest feeding cardboard. In particular, the feeding part is composed of an up-and-down motion plate with holes to suck the lowest corrugated cardboard as well as small rolling rollers after stopping in a moment. Thus this machine does not sensitive to size of corrugated cardboards and also can keep feeding accuracy during feeding fast.

Analytical Calculation for Predicting the Air Gap Flux Density in Surface-Mounted Permanent Magnet Synchronous Machine

  • Feng, Yan-li;Zhang, Cheng-ning
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.769-777
    • /
    • 2017
  • The research of air gap flux density has a significant effect on predicting and optimizing the structure parameters of electrical machines. In the paper, the air gap coefficient, leakage flux factor and saturation coefficient are first analytically expressed in terms of motor properties and structure parameters. Subsequently, the analytical model of average air gap flux density for surface-mounted permanent magnet synchronous machines is proposed with considering slotting effect and saturation. In order to verify the accuracy of the proposed analytical model, the experiment and finite element analysis (FEA) are used. It shows that the analytical results keep consistency well with the experimental result and FEA results, and the errors between FEA results and analytical results are less than 5% for SPM with high power. Finally, the analytical model is applied to optimizing the motor structure parameters. The optimal results indicate that the analytical calculation model provides a great potential to the machine design and optimization.

Analysis on the Rotor Losses in High-Speed Permanent Magnet Synchronous Motor Considering the Operating Condition (운전조건을 고려한 고속 영구자석형 동기전동기의 회전자 손실 해석)

  • Jang, Seok-Myeong;Choi, Jang-Young;Cho, Han-Wook
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.1
    • /
    • pp.48-56
    • /
    • 2007
  • In this paper, the rotor losses in high-speed permanent synchronous motor (PMSM) considering the operating condition are discussed. In order to maintain the mechanical integrity of a high-speed permanent magnet machine rotor intended for high-speed operation, the rotor assembly is often retained within a stainless steel or Carbon-Fiber/Epoxy sleeve. The sleeve is exposed to fields produced by the stator from either the slotting or the mmf harmonics that are not synchronous with rotor losses. On the basis of analytical field analysis, the rotor losses are analyzed. In particular, the no-load, rated with air-cooled, and forced water cooled conditions are considered. The results are validated extensively by comparison with non-linear finite element method (FEM).

Comparison on the Airgap Flux Density of High-Speed Slotless Machines with Radial Magnetization and Halbach Array PM Rotor (반경방향 착자형과 Halbach 배열형 영구자석 회전자를 갖는 고속 슬롯리스 기기의 공극자속밀도 특성 비교)

  • Jang, Seok-Myeong;Jeong, Sang-Seop;Ryu, Dong-Wan
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.50 no.7
    • /
    • pp.315-322
    • /
    • 2001
  • High speed brushless permanent magnet(PM) machines need a key technology to minimize the iron core losses in stator and the eddy current losses in the retained sleeve and magnets caused by slotting harmonics. Thus, slotless or iron-coreless brushless PM machines have been applied for a very high rotational speed and/or the ripple-free torque. Unfortunately, slotless or coreless PM machines have lower open-circuit field than slotted and/or iron-cored types, which cause to reduce power density. Fortunately, Halbach array can generate the strong magnetic field systems without additional magnetic materials. In this paper, the 4-pole Halbach array is applied to the high speed machine and is compared with the radial magnetized PM array in field system. The iron-/air-cored stator of PM machine is constructed with/without winding slots. Open circuit magnetic fields of each type are presented from the analytical method and finite element method. Consequently, it is confirmed that the Halbach array field system with slotless stator is more suitable to the high speed motor because it has high flux density, sinusoidal flux distribution than others.

  • PDF

Characteristic Analysis of Rotor Losses in High-Speed Permanent Magnet Synchronous Motor (초고속 영구자석형 동기 전동기의 회전자 손실 특성해석)

  • 장석명;조한욱;이성호;양현섭
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.3
    • /
    • pp.143-151
    • /
    • 2004
  • High-speed permanent magnet machines are likely to be a key technology for electric drives and motion control systems for many applications, since they are conductive to high efficiency, high power density, small size and low weight. In high-speed machines, the permanent magnets are often contained within a retaining sleeve. However, the sleeve and the magnets are exposed to high order flux harmonics, which cause parasitic eddy current losses. Rotor losses of high-speed machines are of great importance especially in high-speed applications, because losses heat the rotor, which is often very compact construction and thereby difficult to cool. This causes a danger of demagnetization of the NdFeB permanent magnets. Therefore, special attention should be paid to the prediction of the rotor losses. This paper is concerned with the rotor losses in permanent magnet high-speed machines that are caused by permeance variation due to stator slotting. First, the flux harmonics are determined by double Fourier analysis of the normal flux density data over the rotor surface. And then, the rectilinear model was used to calculate rotor losses in permanent magnet machines. Finally, Poynting vector have been used to investigate the rotor eddy current losses of high-speed Permanent magnet machine.