• 제목/요약/키워드: Sloshing Frequency

검색결과 91건 처리시간 0.025초

Nonlinear sloshing in rectangular tanks under forced excitation

  • Zhao, Dongya;Hu, Zhiqiang;Chen, Gang;Lim, Serena;Wang, Shuqi
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제10권5호
    • /
    • pp.545-565
    • /
    • 2018
  • A numerical code is developed based on potential flow theory to investigate nonlinear sloshing in rectangular Liquefied Natural Gas (LNG) tanks under forced excitation. Using this code, internal free-surface elevation and sloshing loads on liquid tanks can be obtained both in time domain and frequency domain. In the mathematical model, acceleration potential is solved in the calculation of pressure on tanks and the artificial damping model is adopted to account for energy dissipation during sloshing. The Boundary Element Method (BEM) is used to solve boundary value problems of both velocity potential and acceleration potential. Numerical calculation results are compared with published results to determine the efficiency and accuracy of the numerical code. Sloshing properties in partially filled rectangular and membrane tank under translational and rotational excitations are investigated. It is found that sloshing under horizontal and rotational excitations share similar properties. The first resonant mode and excitation frequency are the dominant response frequencies. Resonant sloshing will be excited when vertical excitation lies in the instability region. For liquid tank under rotational excitation, sloshing responses including amplitude and phase are sensitive to the location of the center of rotation. Moreover, experimental tests were conducted to analyze viscous effects on sloshing and to validate the feasibility of artificial damping models. The results show that the artificial damping model with modifying wall boundary conditions has better applicability in simulating sloshing under different fill levels and excitations.

Analytical and experimental study on natural sloshing frequencies in annular cylindrical tank with a bottom gap

  • Lee, H.W.;Jeon, S.H.;Cho, J.R.;Seo, M.W.;Jeon, W.B.
    • Structural Engineering and Mechanics
    • /
    • 제57권5호
    • /
    • pp.877-895
    • /
    • 2016
  • This paper is concerned with the analytical derivation of natural sloshing frequencies of liquid in annular cylindrical tank and its verification by experiment. The whole liquid domain is divided into three simple sub-regions, and the region-wise linearized velocity potentials are derived by the separation of variables. Two sets of matrix equations for solving the natural sloshing frequencies are derived by enforcing the boundary conditions and the continuity conditions at the interfaces between sub-regions. In addition, the natural sloshing frequencies are measured by experiment and the numerical accuracy of the proposed analytical method is verified through the comparison between the analytical and experimental results. It is confirmed that the present analytical method provides the fundamental sloshing frequencies which are in an excellent agreement with the experiment. As well, the effects of the tank radial gap, the bottom flow gap and the liquid fill height on the fundamental sloshing frequency are parametrically investigated.

사각형 연료탱크 내 슬로싱 주파수 응답 해석 (Analysis of Sloshing Frequency Response in Rectangular Fuel-Storage Tank)

  • 조진래;이홍우;하세윤;박태학;이우용
    • 한국전산구조공학회논문집
    • /
    • 제16권1호
    • /
    • pp.95-104
    • /
    • 2003
  • 본 논문은 사각형 연료 탱크 내 비점성, 비압축성, 비회전 유동에 대한 슬로싱 주파수 응답의 유한요소 해석을 다룬다. 지배방정식으로 포텐셜 이론을 기반으로 한 라플라스 방정식을 적용한다. 슬로싱 운동이 작다고 가정하여 선형화된 자유표면 조건을 적용하였고, 변수분리기법을 이용하여 이론해를 구하였다. 점성 감쇠에 따른- 에너지 소산의 영향을 구현하기 위해 가상치 점성 계수를 도입하였으며, 이고 인해 공진 주파수에서 응답의 발산을 방지할 수 있나. 슬로싱 응답의 최대 진폭을 예측하기 위해 9절점 요소를 사용한 유한요소법을 이용하여 해석하였다. 슬로싱 높이, 유체 내부 동수압 및 내부 유체력의 수치 결과는 이론해와 잘 일치하였다. 유한요소 시험 프로그램을 검증한 후, 유체높이에 따른 슬로싱 주파수 응답 특성을 분석하였다.

가진 주파수에 따른 이차원 사각탱크 내부의 슬로싱에 관한 수치적 연구 (NUMERICAL STUDY OF THE SLOSHING PHENOMENON IN THE 2-DIMENSIONAL RECTANGULAR TANK WITH VARIABLE FREQUENCY AT A LOW FILLING LEVEL)

  • 정재환;이창열;윤현식;김효주
    • 한국전산유체공학회지
    • /
    • 제20권1호
    • /
    • pp.16-25
    • /
    • 2015
  • The present study investigates the sloshing phenomena in a two-dimensional rectangular tank at a low filling level by using a level set method based on finite volume method. The code validations are performed by comparing between the present results and previous numerical and experimental results, which gives a good agreement. Various excitation frequencies and excitation amplitude of the 30% filling height tank have been considered in order to observe the dependence of the sloshing behavior on the excitation frequency and amplitude. Regardless of excitation amplitude, the maximum value of wall pressure occurs when the excitation frequency reaches the natural frequency. The time sequence of free surface and corresponding streamlines for excitation frequencies have been presented to analysis the variation of wall pressure according to time, which contributes to explain the double peaks in the time variation of wall pressure.

슬로싱 액체 댐퍼를 이용한 사각형 폰툰의 운동 저감 (Motion Reduction of Rectangular Pontoon Using Sloshing Liquid Damper)

  • 조일형
    • 한국해양공학회지
    • /
    • 제33권2호
    • /
    • pp.106-115
    • /
    • 2019
  • The interaction between a sloshing liquid damper (SLD) tank and a rectangular pontoon was investigated under the assumption of the linear potential theory. The eigenfunction expansion method was used not only for the sloshing problem in the SLD tank but also for analyzing the motion responses of a rectangular pontoon in waves. If the frictional damping due to the viscosity of the SLD tank was ignored, the effect of the SLD appeared to be an added mass in the coupled equation of motion. The installation of the SLD tank had a greater effect on the roll motion response than the sway and heave motion of the pontoon. One resonance peak for rolling motion showed up in the case of a frozen liquid in the SLD tank. However, if liquid motion in the SLD tank was allowed, two peaks appeared around the first natural frequency of the fluid in the SLD tank. In particular, the peak value located in the low-frequency region had a relatively large value, and the peak frequency located in the high-frequency region moved into the high-frequency region as the depth of the liquid in the tank increased.

Experimental study on characteristic of sloshing impact load in elastic tank with low and partial filling under rolling coupled pitching

  • Wu, Wenfeng;Zhen, Changwen;Lu, Jinshu;Tu, Jiaoyang;Zhang, Jianwei;Yang, Yubin;Zhu, Kebi;Duan, Junxian
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제12권1호
    • /
    • pp.178-183
    • /
    • 2020
  • A series of experiments covering lowest three natural frequencies of rolling coupled pitching were conducted to investigate liquid sloshing with low liquid depth. The test results show that the most violent liquid sloshing in rolling and pitching is located in the vicinity of the first order natural frequency (f1). When the excitation frequency of rolling and pitching is located between 0.98f1 and 1.113f1, roof-bursting phenomenon of liquid appeared, and the maximum impact pressure is at 1.09f1. When the external excitation frequency is at 1.113f1, the number of sloshing shocks decreases sharply. Furthermore, the space distribution of the impact pressure on the left bulkhead and the top bulkhead was analyzed. It is concluded that with low liquid filling, the impact load is greater near the free surface and the top of tank, and the impact position of the side bulkhead increases with the increasing of the frequency near the resonant frequency.

Study for Effects of Sloshing Effect Reduction Device on Vessel Motion

  • Kim, Kyung Sung;Kim, Moo Hyun
    • Journal of Advanced Research in Ocean Engineering
    • /
    • 제3권3호
    • /
    • pp.149-157
    • /
    • 2017
  • Since sloshing effects influences ship motions including floater's natural frequencies. The significant factors changing ship motions are inner liquid impact loads and inertia forces and moments with respect to its filling ratio. This means that changing sloshing loads with sloshing effects reduction device (SERD) may control ship motions. In this regard, conceptual model for adjustable SERD was suggested by authors and then implanted into fully coupled program between vessel motion and sloshing. By changing clearances of baffles in the inner tank which were component of SERD, then the roll RAOs from each case were obtained. It is revealed that using well-controlled SERD can maintain natural frequencies of floater even inner tank has different filling ratio.

Free Surface Tracking for the Accurate Time Response Analysis of Nonlinear Liquid Sloshing

  • Cho Jin-Rae;Lee Hong-Woo
    • Journal of Mechanical Science and Technology
    • /
    • 제19권7호
    • /
    • pp.1517-1525
    • /
    • 2005
  • Liquid sloshing displays the highly nonlinear free surface fluctuation when either the external excitation is of large amplitude or its frequency approaches natural sloshing frequencies. Naturally, the accurate tracking of time-varying free surface configuration becomes a key task for the reliable prediction of the sloshing time-history response. However, the numerical instability and dissipation may occur in the nonlinear sloshing analysis, particularly in the long-time beating simulation, when two simulation parameters, the relative time-increment parameter a and the fluid mesh pattern, are not elaborately chosen. This paper intends to examine the effects of these two parameters on the potential-based nonlinear finite element method introduced for the large amplitude sloshing flow.

부유식 해상풍력발전기의 자세제어장치 개발을 위한 환형 실린더 탱크의 슬로싱 실험 (Experiment on Sloshing of Annular Cylindrical Tank for Development of Attitude Control Devices of Floating Offshore Wind Turbines)

  • 서명우;정의봉;조진래
    • 한국소음진동공학회논문집
    • /
    • 제23권1호
    • /
    • pp.25-33
    • /
    • 2013
  • The floating offshore wind turbines are usually exposed to the wave and wind excitations which are irregular and undirected. In this paper, the sloshing characteristics of annular cylindrical tank were experimentally investigated to reduce the structural dynamic motion of floating offshore wind turbine which is robust to the irregular change of excitation direction of wind and wave. The formula for the natural sloshing frequencies of this annular cylindrical tank was derived theoretically. In order to validate this formula, the shaking equipment was established and frequency response functions were measured. Two types of tank were considered. The first and second natural sloshing frequencies were investigated according to the depth of the water. It has been observed that between theoretical and experimental results shows a good agreement.

Parametric studies on sloshing in a three-dimensional prismatic tank with different water depths, excitation frequencies, and baffle heights by a Cartesian grid method

  • Jin, Qiu;Xin, Jianjian;Shi, Fulong;Shi, Fan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제13권1호
    • /
    • pp.691-706
    • /
    • 2021
  • This paper aims to numerically investigate violent sloshing in a partially filled three-dimensional (3D) prismatic tank with or without a baffle, further to clarify the suppressing performance of the baffle and the damping mechanism of sloshing. The numerical model is based on a Cartesian grid multiphase flow method, and it is well validated by nonlinear sloshing in a 3D rectangular tank with a vertical baffle. Then, sloshing in an unbaffled and baffled prismatic tank is parametrically studied. The effects of chamfered walls on the resonance frequency and the impact pressure are analyzed. The resonance frequencies for the baffled prismatic tank under different water depths and baffle heights are identified. Moreover, we investigated the effects of the baffle on the impact pressure and the free surface elevation. Further, the free surface elevation, pressure and vortex contours are analyzed to clarify the damping mechanism between the baffle and the fluid.