• 제목/요약/키워드: Slopes

Search Result 2,190, Processing Time 0.032 seconds

Scour around vertical piles due to random waves alone and random waves plus currents on mild slopes

  • Ong, Muk Chen;Myrhaug, Dag;Fu, Ping
    • Ocean Systems Engineering
    • /
    • v.6 no.2
    • /
    • pp.161-189
    • /
    • 2016
  • This paper provides a practical stochastic method by which the maximum equilibrium scour depth around a vertical pile exposed to random waves plus a current on mild slopes can be derived. The approach is based on assuming the waves to be a stationary narrow-band random process, adopting the Battjes and Groenendijk (2000) wave height distribution for mild slopes including the effect of breaking waves, and using the empirical formulas for the scour depth on the horizontal seabed by Sumer and Fredsøe (2002). The present approach is valid for wave-dominant flow conditions. Results for random waves alone and random wave plus currents have been presented and discussed by varying the seabed slope and water depth. An approximate method is also proposed, and comparisons are made with the present stochastic method. For random waves alone it appears that the approximate method can replace the stochastic method, whereas the stochastic method is required for random waves plus currents. Tentative approaches to related random wave-induced scour cases on mild slopes are also suggested.

The prediction of the critical factor of safety of homogeneous finite slopes subjected to earthquake forces using neural networks and multiple regressions

  • Erzin, Yusuf;Cetin, T.
    • Geomechanics and Engineering
    • /
    • v.6 no.1
    • /
    • pp.1-15
    • /
    • 2014
  • In this study, artificial neural network (ANN) and multiple regression (MR) models were developed to predict the critical factor of safety ($F_s$) of the homogeneous finite slopes subjected to earthquake forces. To achieve this, the values of $F_s$ in 5184 nos. of homogeneous finite slopes having different slope, soil and earthquake parameters were calculated by using the Simplified Bishop method and the minimum (critical) $F_s$ for each of the case was determined and used in the development of the ANN and MR models. The results obtained from both the models were compared with those obtained from the calculations. It is found that the ANN model exhibits more reliable predictions than the MR model. Moreover, several performance indices such as the determination coefficient, variance account for, mean absolute error, root mean square error, and the scaled percent error were computed. Also, the receiver operating curves were drawn, and the areas under the curves (AUC) were calculated to assess the prediction capacity of the ANN and MR models developed. The performance level attained in the ANN model shows that the ANN model developed can be used for predicting the critical $F_s$ of the homogeneous finite slopes subjected to earthquake forces.

A Study of Stability Analysis on Unsaturated Weathered Slopes Based on Rainfall-induced Wetting (강우시 습윤에 의한 불포화 풍화토의 사면 안정 해석 연구)

  • 김재홍;박성완;정상섭;유지형
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.2
    • /
    • pp.123-136
    • /
    • 2002
  • The infiltration of prolonged rainfall causes shallow slope failures on surficial slopes. Experiments performed on soil-water characteristic curves in weathered soils of three different types(SW, SP, SM) were used to construct a general equation for the soil-water characteristic curve. Based on this, the saturated depth by Green & Ampt model was compared with the results of numerical analyses and the range of application of Green & Ampt model was evaluated. It was found that the saturated depth occurred by infiltration on the surface of slopes has an inf1uence on the surficial stability of slopes md, the stability analysis of unsaturated soils calculated by using the soil-water characteristic curve of weathered soils was found to be a proper analysis for shallow slope failures due to rainfall.

The Application of Geosynthetic Reinforced Soil Method in the Failed Slopes (붕괴사면 복구를 위한 보강토 공법의 적용)

  • Cho, Yong-Seong;Kim, You-Seong;Park, Inn-Joon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.171-178
    • /
    • 2005
  • It is unavoidable to be formed slopes under special circumstance of Korea where 70% of the whole area are composed of mountains when civil engineering projects such as roads, site developments are increased with industrial development and horizontal expansions of urban area. Moreover, stability of the slopes become one of quite important issues under special meteorological characteristics that over two-thirds of annual average rainfall are concentrated in summer season and the localized torrential downpour are getting more frequent recently. Resulting in these circumstances, partial slope failures by debris flow of the high water content soils are occurred frequently in cutting soil slopes. In this case of debris flow slope failure, slope declination method are selected for their stable recovery because it is impossible to recover entirely by existing recovery methods. Seeding or special grass planting methods are followed separately without exception. The method by which entire recover with bigger stability ratio would be possible and grass planting work would be done simultaneously is developed. In this study, the results of the tests including a real construction history in a failed slope using developed method are described

  • PDF

Limit Equilibrium, Finite Difference, and Finite Element Analysis of Slopes (한계평형해석(LEM), 유한차분법(FDM) 및 유한요소법(FEM)을 이용한 사면안정해석)

  • Jeon, Sang-Soo;Lee, Choong-Ho;Oh, Mi-Hee;Gang, Sang-Wook;Pham, Nguyeon Quoc;Kim, Doo-Seop
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.199-206
    • /
    • 2005
  • Engineers have performed slope stability analyses, including Limit Equilibrium Analysis, Finite Difference Analysis and Finite Element Analysis. Each analysis results in different Factor of Safety(FS) for slopes. The comparison of FS results from these stability analyses has been carried out for various conditions, such as geometry of slopes, dry and fully saturated soils, nail and anchor reinforcements. Standard deviations of FS calculated from various slope analyses are 0.03 to 0.04 and 0.22 to 0.48 for the slopes without and with nail or anchor reinforcement, respectively. Construction of tiered concrete retaining wall in addition to nail or anchor reinforcement increases FS of 12% to 29% for fully saturated soils.

  • PDF

Comparative Leaf Characteristics of Quercus Mongolica and Rhododendron Schilippenbachii Plants Inhabiting at South- and North- Facing Slopes around Mountain Ridge

  • Park, Yong Mok
    • Journal of Environmental Science International
    • /
    • v.22 no.10
    • /
    • pp.1345-1351
    • /
    • 2013
  • Leaf characteristics of two representative deciduous-tree species in Korean peninsula were compared to assess directional ridge effect on leaf traits of both species. Leaf mass per unit area (LMA) of Rhododendron schilippenbachii in south-facing ridge slope was significantly higher than that in north-facing ridge slope, while Quercus mongolica did not change LMA. Leaf mass of Q. mongolica was increased depending on leaf size irrespective of slope. However, leaf mass of R. schilippenbachii changed differently in responding to expansion of leaf area between both slopes resulting from retardation of leaf expansion in south-facing slope. R. schilippenbachii showed higher leaf nitrogen concentration per unit area (LNCA) in south-facing slope than that in north-facing slope, while Q. mongolica indicated no difference in LNCA between southand north-facing slopes. However, both species revealed no significant difference in leaf nitrogen concentration per unit mass (LNCM) between south- and north-facing slopes. LNCA of Q. mongolica was about two times higher than that of R. schilippenbachii. These results indicate that there is a difference in leaf characteristics including leaf thickness and nitrogen allocation between Q. mongolica and R. schilippenbachii, suggesting the difference of plasticity.

Slope Stability Analysis (사면의 파괴형태 및 그 안정해석에 관한 연구)

  • Lim, Jong Seok;Kim, Myoung Mo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.4 no.3
    • /
    • pp.11-18
    • /
    • 1984
  • There are two different methods in the stability analysis of slopes depending upon the 1ocations and the types of assumed failure planes, which are the infinite slope analysis and the finite slope analysis. The infinite slope analysis is simple and easier in its application. However, since the method neglects the end effects and assumes the failure plane to be located at the shallow depth and parallel to the slope, the slopes to be analyzed by the method should be limited to a certain range. Thus, it is intended in this paper to define the infinite slopes whose stability may be analyzed by the infinite slope analysis. As a result, it is obtained that the method of infinite slope analysis may be applied to the slopes which have the ratio of the slope height to the depth of the failure plane of 9 or bigger.

  • PDF

Cooperative Model within Local Community for the Conservation of the Endangered Plant Species, Corylopsis coreana (멸종위기종, 히어리의 보전을 위한 지역사회 협력 모델)

  • Lim, Dong-Ok;Choung, Heung-Lak
    • Journal of Environmental Impact Assessment
    • /
    • v.18 no.1
    • /
    • pp.51-57
    • /
    • 2009
  • Corylopsis coreana Uyeki is endemic species in the Korean peninsula and is designated a Category Endangered Plant Species by the Wildlife Protection Act of South Korea. We developed the plan and cooperative model within the local community for the species conservation. In order to carry out this plan we first investigated the ecological characteristics of the species. The species shows patterns of discontinuous distribution and is coupled with the unusual feature of only growing on northern exposed slopes. Although Corylopsis coreana is cut the stem every year, many new sprouts are still grown from the root. Natural germination of the seed occurs only on north-facing slopes, but not on south-facing slopes at spring. That is, the species is highly influenced by soil moisture until the seedling stage has been reached. This factor limits the distribution of the species. When saplings are planted on south-facing slopes, they grow well. The information we gathered greatly helped with efforts to draw up conservation plans. In addition, when the information was shared with the local community, builders and residents showed great interest and displayed a will to help with conservation efforts. Therefore, a cooperative model within the local community was drawn up for the conservation of the species. Accordingly this model could be applied at mitigation measure at environment impact assessment.

Characteristics of Several Korean Native Herbaceous Plants for Cut Slope Revegetation (몇 가지 자생 초화류의 사면녹화 특성)

  • Song, Jeong-Seob;Chang, Young-Deug;Lee, Sang-Jeong;Bang, Chang-Seok;Huh, Kun-Yang;Chung, Meyong-Il;Chung, Hyun-Hwan
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.8 no.1
    • /
    • pp.10-16
    • /
    • 2005
  • This experiment was conducted to study on application of several Korean native plants by seed spray methods for cut slope revegetation, and possibility of replacement almost imported tall fescue seeds by native herbaceous plants. So, we investigated growth and covering rate after sowing native plants seeds at the artificial slope plots in Suwon and the rock exposed cut-slopes in Wonju city. Emergence rate after seed spray at artificial slopes were higher Elsholtzia splendens and Dianthus superbus var. longicalycinus, showing the highest in E. splendens. Also, E. splendens, D. superbus var. longicalycinus, and Agrostemma coronaria were possible to use for seed spray at the rock exposed cut-slopes. The plots of mixed native plants show more seasonal scenery than that of tall fescue. Soil surface run-off by Typhoon was less in plot sown native plants than those of lawn grass, resulting fresh weight of roots was heavier. Thus, we found that the mixed seed spray of several native herbaceous plants, E. splendens, D. superbus var. longicalycinus, and Agrostemma coronaria, were well covered the slopes as tall fescue.

Slope Movement Detection using Ubiquitous Sensor Network

  • Jung, Hoon;Kim, Jung-Yoon;Chang, Ki-Tae;Jung, Chun-Suk
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.1
    • /
    • pp.143-148
    • /
    • 2009
  • About 70% of Korea consists of mountainous areas, and during the construction of many roads and railroads, cut slopes are inevitably formed. The rainy season, frost heaving in winter, and thawing in spring can all cause rockfalls and landslides. The failure of these slopes is increasing every year, causing damage to vehicles, personal injury and even death. To protect people and property from such damage, a real-time monitoring system is needed to detect the early stages of slope failures. The GMG placed TRS sensor units in the slopes to monitor them in real-time. But due to its reliance on data lines and power lines, the system is vulnerable to lightning damage. The whole system can be damaged by a single lighting strike. Consequently, for the purposes of this paper we propose the use of the Ubiquitous Sensor Network (USN) which follows the IEEE 802.1.4. By using the USN system we can minimize lightning damage and can monitor the movement of the slopes consistently.