• Title/Summary/Keyword: Slope method

Search Result 2,538, Processing Time 0.028 seconds

A Study on Comparison of Slope Revegetation Methods Through Value Engineering Analysis (가치공학분석을 통한 비탈면녹화공법 비교에 관한 연구)

  • Kim, Nam-Choon;Kim, Do-Hee
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.13 no.1
    • /
    • pp.93-102
    • /
    • 2010
  • Greening sometimes fails because its method is not suitable for various site conditions, therefore the trend of selecting a revegetation method in Korea today is through test construction. However, due to enlargement, complication and diversification of domestic construction businesses, the importance of VE is gradually increasing as effective efforts over a whole life-cycle to obtain goals such as quality improvement and cost reduction, and not only quality and economic efficiency but also substantiality need to be considered in comparing revegetation methods. For this study, Sungnam~Janghowon (area1), where comparatively various slope revegetation methods are used, was selected the investigation site. The site was divided into three areas:blasting rock, ripping rock and earth sand. The revegetation methods used were six in the blasting rock area, five in the ripping rock area, and two in the earth sand region. 2007 monitoring data was analyzed, and Value (V) was calculated with LCC related ratio, and compared and contrasted with the evaluation of prior revegetation methods. Therefore it is believed that this analysis enables selection of the most appropriate method, unbiased towards one particular characteristic such as quality, vegetation growth and economy. When aiming for a durable effect, it shall be more efficient to select the most appropriate method focusing on LCC analysis, which deals with the economic aspect, as well as the design function aspect.

Modified FHWA Design Method Considering Bending Stiffness of Soil Nail (휨강성을 고려한 수정 FHWA 쏘일네일 설계법 제안)

  • Kim, Nak-Kyung;Jung, Jung-Hee;Ju, Yong-Sun;Kim, Sung-Kyu
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.1406-1416
    • /
    • 2008
  • Soil nailing is used as a method of slope stabilization and excavation support. The design method of soil nail are based on experience or assumption of interaction between soil and reinforcement. Most design methods simply considers the tension of reinforcement for analysis of slope stabilization. Soil nails interact with soils under combined loading of shear and tension. Jewell & Pedley(1990) suggested a design equation of shear force with bending stiffness and discussed that the magnitude of the maximum shear force is small in comparison with the maximum axal force. However, they have used a very conservative limiting bearing stress on nails. This paper discusses that the shear strength of soil nails should not be disregarded with proper bearing stresses on nails. The modified FHWA design method was proposed by considering shear forces on nails with bending stiffness.

  • PDF

A Numerical Solution. Method for Two-dimensional Nonlinear Water Waves on a Plane Beach of Constant Slope

  • Lee, Young-Gill;Heo, Jae-Kyung;Jeong, Kwang-Leol;Kim, Kang-Sin
    • Journal of Ship and Ocean Technology
    • /
    • v.8 no.2
    • /
    • pp.61-69
    • /
    • 2004
  • Unsteady nonlinear wave motions on the free surface over a plane beach of constant slope are numerically simulated using a finite difference method in rectangular grid system. Two-dimensional Navier-Stokes equations and the continuity equation are used for the computations. Irregular leg lengths and stars are employed near the boundaries of body and free surface to satisfy the boundary conditions. Also, the free surface which consists of markers or segments is determined every time step with the satisfaction of kinematic and dynamic free surface conditions. Moreover, marker-density method is also adopted to allow plunging jets impinging on the free surface. The second-order Stokes wave theory is employed for the generation of waves on the inflow boundary. For the simulation of wave breaking phenomena, the computations are carried out with the plane beach of constant slope in surf zone. The results are compared with other existing experimental results. Agreement between the experimental data and the computation results is good.

Solution Comparisons of Modified Mild Slope Equation and EFEM Plane-wave Approximation (수정 완경사파랑식과 EFEM 평면파 근사식의 해 비교)

  • Seo, Seung-Nam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.21 no.2
    • /
    • pp.117-126
    • /
    • 2009
  • In order to test the accuracy between the modified mild slope equation (MMSE) without evanescent modes and the plane-wave approximation (PA) of eigenfunction expansion method, various numerical results from both models are presented. In this study, analytical solutions of two models are employed, one based on the MMSE derived by Porter (2003) and the other on the scatterer method of PA by Seo (2008a). Judging from direct comparisons against existing results of rapidly varying topography, the PA model gives better predictions of the wave propagation than the MMSE model.

A Study on the Debris Flow Hazard Mapping Method using SINMAP and FLO-2D

  • Kim, Tae Yun;Yun, Hong Sic;Kwon, Jung Hwan
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.24 no.2
    • /
    • pp.15-24
    • /
    • 2016
  • This study conducted an evaluation of the extent of debris flow damage using SINMAP, which is slope stability analysis software based on the infinite slope stability method, and FLO-2D, a hydraulic debris flow analysis program. Mt. Majeok located in Chuncheon city in the Gangwon province was selected as the study area to compare the study results with an actual 2011 case. The stability of the slope was evaluated using a DEM of $1{\times}1m$ resolution based on the LiDAR survey method, and the initiation points of the debris flow were estimated by analyzing the overlaps with the drainage network, based on watershed analysis. In addition, the study used measured data from the actual case in the simulation instead of existing empirical equations to obtain simulation results with high reliability. The simulation results for the impact of the debris flow showed a 2.2-29.6% difference from the measured data. The results suggest that the extent of damage can be effectively estimated if the parameter setting for the models and the debris flow initiation point estimation are based on measured data. It is expected that the evaluation method of this study can be used in the future as a useful hazard mapping technique among GIS-based risk mapping techniques.

Stability Analysis of Soil Nailed Slope by Discrete Element Method (개별요소법을 이용한 지반네일에 의해 보강된 굴착사면의 안정해석)

  • 김주용;김준석
    • Geotechnical Engineering
    • /
    • v.11 no.4
    • /
    • pp.49-62
    • /
    • 1995
  • Soil nailing has been widely rosed during the last two decades to stabilize sheep excavated slopes in several countries. In thin study, the discrete element method has been applied to evaluate the stability of the reiuorced slope. This method is capable of not only estimat ins tensile and sheer stresses mobilized in nails but also providing individual safety factors of soil and nails, It has been assumed that the nailed slope be comprised of slices connected with elastoplastic twinkler springs. A reasonable mechanism is applied for representing the behavior between nails and adj scent soils. Taking into account for the bequence of construction the developed method well predicts the measured tensile forces developed in nails so that it is possible to appropriately evaluate the overall safety factor.

  • PDF

Dynamic Factor of Safety Calculation of Slope by Nonlinear Response History Analysis (비선형 응답이력해석을 통한 사면의 동적 안전계수 계산)

  • Lee, Yonghee;Kim, Hak-Sung;Ju, Young-Tae;Kim, Daehyeon;Park, Heon-Joon;Park, Duhee
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.9
    • /
    • pp.5-12
    • /
    • 2021
  • Pseudo-static slope stability analysis method is widely used in engineering practice to calculate the seismic factor of safety of slope subjected to earthquake ground motions. Although the dynamic analysis method is well recognized to have the primary advantage of simulating the stress-strain response of soils, it is not often used in practice because of the difficult in estimating the factor of safety. In this study, a procedure which utilizes the dynamic analysis method to extract the transient dynamic factor of safety is devleoped. This method overcomes the major limitation of the pseudo-static method, which uses an empirically determined seismic coefficient to derive the factor of safety. The proposed method is applied to a slope model and the result is compared with that of the pseudo-static method. It is shown that minimum dynamic factor of safety calculated by the dynamic analysis is slightly larger than that determined from the pseudo-static method. It is also demonstrated that the dynamic factor of safety becomes minimum when the horizontal seismic coefficient and horizontal average acceleration are maximum.

A comparative study on slope stability by program and stability cahrt (프로그램과 도표에 의한 사면안정해석의 비교연구)

  • Ju, Gyeong-Hun;Kim, Ju-Cheol;Lee, Jong-Gyu
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1994.09a
    • /
    • pp.253-258
    • /
    • 1994
  • Recently, computer technique for the analysis of slope stability enable to reduce a considerable time and efforts. And also, stability problems can be approached by using stablility chart which was basically developed to handle the problems under simple conditions only. Most of the conventional slope stability computer programs and stability chart are still based on the general limit equilibrium method. 16 types of sample slopes and 2 types of failure slope were compared and analysed by stability charts and programs. This research work intend to apply 4 types of conventional computer programs based on the same theoretical backgroung and 7 types of stability charts for solving the same stability problems and the results and compared and analysed in order to justify their reliability.

  • PDF

A Study on In-Situ Slope Reinforcement Methods Using Nailed Geotextiles (네일 및 지오텍스타일을 이용한 원위치 사면보강공법에 관한 연구)

  • 김홍택
    • Geotechnical Engineering
    • /
    • v.10 no.4
    • /
    • pp.133-152
    • /
    • 1994
  • In the present study, an economic design of Anchored Geosynthetic(AG) System applied mainly to reinforce unstable soil slopes is investigated. For this purpose methods of stability analysis are developed to determine the optimum installation angle, required minimum length and maximum spacing of nails. Anchorage of nails within the soil mass is achieved by frictional resistance to pull out along the effective length of the nails. Cases of infinite slope and finite slope are dealt with individually. Silce methods of stability analysis developed in the present study are limit-equilibrium-based. For the case of finite slope Spencer method which considers interslice force is modified to evalyate the overall stability. In addition, the effects of various design parameters on requried length and spacing of nails corresponding to the optimum orientation of nails are analyzed. Based on the analysis, a simplified equation is given for the optimum nail orientation. Also the importance of optimum nail orientation is illustrated throughout design example, and the appropriateness of judgment criterion are examined.

  • PDF

A Study on the Learning Efficiency of Multilayered Neural Networks using Variable Slope (기울기 조정에 의한 다층 신경회로망의 학습효율 개선방법에 대한 연구)

  • 이형일;남재현;지선수
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.20 no.42
    • /
    • pp.161-169
    • /
    • 1997
  • A variety of learning methods are used for neural networks. Among them, the backpropagation algorithm is most widely used in such image processing, speech recognition, and pattern recognition. Despite its popularity for these application, its main problem is associated with the running time, namely, too much time is spent for the learning. This paper suggests a method which maximize the convergence speed of the learning. Such reduction in e learning time of the backpropagation algorithm is possible through an adaptive adjusting of the slope of the activation function depending on total errors, which is named as the variable slope algorithm. Moreover experimental results using this variable slope algorithm is compared against conventional backpropagation algorithm and other variations; which shows an improvement in the performance over pervious algorithms.

  • PDF