• Title/Summary/Keyword: Slope Monitoring

Search Result 388, Processing Time 0.026 seconds

Predictors of parental behavioral intentions for vaccinating their children against COVID-19 as determined by the modified theory of planned behavior (자녀의 코로나19 백신접종에 대한 부모의 행위의도 예측요인: 계획된 행위이론의 수정모형 적용)

  • Kwon, Mi-Young;Kim, Nam-Yi
    • The Journal of Korean Academic Society of Nursing Education
    • /
    • v.29 no.3
    • /
    • pp.292-301
    • /
    • 2023
  • Purpose: This study attempted to present a strategy to increase behavioral vaccination intention by identifying factors affecting parents' intention to have their children vaccinated against coronavirus disease 2019 (COVID-19) by applying the modified theory of planned behavior. Methods: An online survey was conducted with 146 parents of children aged 5 to 17 from August 1 to 30, 2022, and, as a result, 146 data were analyzed. The moderating effect of perceived behavioral control in the relationship between parents' attitude, subjective norms, and behavioral intention for children's COVID-19 vaccination was analyzed using the Process Macro (10,000 bootstrapping, 95% confidence interval), and a simple slope analysis was performed to identify differences by group. Results: The moderating effect of perceived behavioral control was statistically significant in the relationship between parent's attitude and subjective norms for COVID-19 vaccination and behavioral intention. In the simple slope analysis, the reinforcement effect was greatest when the level of perceived behavioral control was high. Conclusion: Since vaccination is most likely when recommended by healthcare providers, it is necessary to ensure that health education through community health experts or mass media can be effectively conducted. In particular, objective information on the effectiveness and safety of COVID-19 vaccinations for children, including monitoring of potential side-effects, should be actively reported.

Reduction Efficiency Analysis of Furrow Vegetation and PAM (Polyacrylamide) Mulching for Non-Point Source Pollution Load from Sloped Upland During Farming Season (경사밭 고랑 식생 및 PAM (Polyacrylamide) 멀칭에 따른 영농기 비점오염 저감효과 분석)

  • Yeob, So-Jin;Kim, Min-Kyeong;An, Nan-Hee;Choi, Soon-Kun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.65 no.4
    • /
    • pp.1-10
    • /
    • 2023
  • As a result of climate change, non-point source pollution (NPS) from farmland with the steep slope during the rainy season is expected to have a significant impact on the water system. This study aimed to evaluate the effect of furrow mulching using alfalfa and PAM (Polyacrylamide) materials for each rainfall event, while considering the load characteristics of NPS. The study was conducted in Wanju-gun, Jeollabuk-do, in 2022, with a testbed that had a slope of 13%, sandy loam soil, and maize crops. The testbed was composed of four plots: bare soil (Bare), No mulching (Cont.), Vegetation mulching (VM), and PAM mulching (PM). Runoff was collected from each rainfall event using a 1/40 sampler and the NPS load was calculated by measuring the concentrations of SS, T-N, T-P, and TOC. During farming season, the reduction efficiency of NPS load was 37.1~59.5% for VM and 38.2~75.7% for PM. The analysis found that VM had a linear regression correlation (R2=0.28~0.86, P-value=0.01~0.1) with elapsed time of application, while PM had a quadratic regression correlation (R2=0.35~0.80, P-value=0.1). These results suggest that the selection of furrow mulch materials and the appropriate application method play a crucial role in reducing non-point pollution in farmland. Therefore, further studies on the time-series reduction effect based on the application method are recommended to develop more effective preemptive reduction technologies.

Evaluation of the Effect of Pump and Fertilize on Nitrate Reduction in Groundwater (지하수 관개 시비의 지하수 내 질산성질소 저감 효과 평가)

  • Yuhoon Yeum;Young Kim;Moon-su Kim;Sunhwa Park;Kyungjin Han
    • Journal of Soil and Groundwater Environment
    • /
    • v.29 no.1
    • /
    • pp.18-27
    • /
    • 2024
  • In this study, the pump and fertilize (PAF) was applied to reduce nitrogen infiltration into groundwater at three corn cultivation sites over a three-year period, and its effectiveness was evaluated. PAF involves pumping nitrate-contaminated groundwater and using it for irrigation, thereby replacing the need for chemical fertilizers. This method not only substitutes chemical fertilization, but also reduces nitrogen infiltration into groundwater through root zone consumption. To confirm PAF's effectiveness, an equal amount of nitrogen was applied in each cultivation plot, either through chemical fertilizer or irrigation with nitrate-contaminated groundwater. Regular monitoring of infiltrating pore water and groundwater was conducted in each cultivation plot. The linear regression slope for nitrate concentration in the pore water after repeated application of PAF ranged from -3.527 to -8.3485 mg-N/L/yr, confirming that PAF can reduce nitrate concentration in the pore water. With an increasing proportion of PAF, the infiltrating nitrate mass in pore water was reduced by 42% compared to plots fertilized with chemical fertilizer. Additionally, the linear regression slope of nitrate concentration in groundwater was calculated as -2.2999 and -9.2456 mg-N/L/yr. Therefore, continuous application of PAF in rural areas is expected to significantly contribute to reducing nitrate concentration in groundwater.

Effect of domestic sewage on macro-micro physical and mechanical properties of soil

  • Zhi-Fei Li;Wei Liu;Yu-Ao Li;Yi Li;Shu-Chang Zhang;Yin-Lei Sun
    • Structural Monitoring and Maintenance
    • /
    • v.11 no.3
    • /
    • pp.247-262
    • /
    • 2024
  • Domestic sewage can greatly affect the macro-micro physical-mechanical properties of building foundation soils. In order to investigate the effect of domestic sewage on physical and mechanical properties of soils, the physicochemical properties of three groups of different concentrations of domestic sewage contaminated soil were tested through indoor experiments. Combined with scanning electron microscopy, X-ray diffraction experiments, and grey relational analysis, the degree of influence of different concentrations of domestic sewage on the physicochemical properties of soil was compared and analyzed from multiple perspectives such as microstructure and mineral composition, revealing the influencing mechanism of soil pollution by domestic sewage. The results showed that under the immersion of contaminated water, the color of the soaking water turned black first and then yellow, and brownish yellow secretions appeared on the surface of the soil samples. The moisture content, specific gravity, density, and pore ratio index of the soil samples immersed in 50% and 100% domestic sewage decreased with the increase of sewage concentration, while the liquid limit of the soil samples changed in the opposite direction. The immersion time had little effect on the slope of the compression curve of the soil samples soaked in tap water. For the soil samples immersed in domestic sewage, the slope of the compression curve and the compression coefficient increased with the increase of domestic sewage concentration and immersion time, while the compression modulus showed the opposite trend. In the soil samples immersed in tap water, there were a large number of small particles and cementitious substances, and the structure was relatively dense. With the increase of domestic sewage concentration, the microstructure of the soil changed significantly, with the appearance of sigle particle structure, loose and disorderly arrangement of particles, increased and enlarged pores, gradual reduction of small particle substances and cementitious substances, and the soil structure transformed from compact to loose. The research findings can provide theoretical reference for contaminated geotechnical engineering.

Shallow-depth Tilt Monitoring for Engineering Application (공학적 활용을 위한 천부지반 틸트 모니터링)

  • 이상규
    • The Journal of Engineering Geology
    • /
    • v.3 no.3
    • /
    • pp.279-293
    • /
    • 1993
  • In recent yeaes, the collapses of man made structures have been encountered from time to time due to the deformation of the ground in korea. Furthermore, the possibilities of casasters from the ground deformation suCh as landslide and active fault are atrracting our attention to the deformation monitoring. In this study, two-coordinate tilt which was monitored during six months in order to develop tediniques for prevention of disasters from the ground deformation. The two-coordinate tilt which was detected by a tilt-sensor installed in shallow depth on the slope with the sensitivity of 0.0001 arc.sec in every 10 minutes was recorded continously to PC through the interface with 200-m line coonection. The observed digital tilt data. together with the relevant meteorological data were analyzed in reference to engineering application. During the whole observation period of six months, the net tilt is 10.06 arc.sec to the west and 73.88 arc.sec to the south. Consequently the ground has a tilt of 74.56 arc.sec to the direction of $S7.75^{\circ}W$ with average tilting of 0.02 arc.sec/hour. In spite of such fast and large tilting, it is interpreted in view of engineering aspects that the site is much safe from danger, since both East-West and North-South components of tilt converge as time goes by. Two categories of deformational events are recognized ; one is toward the direction of surface slope and the other is to the direction of increased pore pressure. Tiks are acenain to have a close relation with precipitation of rain. The daily variation of two-coordinate tilt is delayed 4.3 hours in average after the variation of atmospheric temperature. A certain correlation between atmospheric pressure and deformation might be revealed.

  • PDF

Experimental Analysis on Vibration of Composite Plate by Using FBG Sensor System (브래그 격자 센서 시스템을 이용한 복합재 평판 진동의 실험적 해석)

  • Kim, Dae-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.5
    • /
    • pp.436-441
    • /
    • 2009
  • A fiber optic sensor is prospective to be applied to structural health monitoring. Especially, a fiber Bragg grating(FBG) sensor is one of the most popular sensors for the structural health monitoring. The FBG sensor has several demodulation systems for tracking the shift of the Bragg wavelength. The dynamic bandwidth is dependent on the demodulation system. In this paper, the sensing mechanism is that the slope of the optical spectrum of FBG could be used as its sensitivity when the tunable laser shot the monochromatic laser wavelength at the highest slope point. In this technique, the high sensitivity is guaranteed even though the sensing range is limited. In an example of the application, the composite plate embedding a FBG sensor was manufactured by using an autoclave method and the above sensing mechanism was applied to the composite plate. Firstly, the natural frequencies of the plate were successfully measured by the FBG sensor during the impact hammer test. Secondly, a high-power speaker was used to force the plate to be vibrated at the specific frequency that was one of the natural frequencies. During the shaking, the FBG sensor measures the dynamic characteristics and ESPI was also used to measure the mode shape. From the two dynamic tests, the availability of the FBG sensor system and the ESPI was proven as a technique for measuring the dynamic characteristics of composite structure.

The inference about the cause of death of Korean Fir in Mt. Halla through the analysis of spatial dying pattern - Proposing the possibility of excess soil moisture by climate changes - (한라산 구상나무 공간적 고사패턴 분석을 통한 고사원인 추정 - 기후변화에 따른 토양수분 과다 가능성 제안 -)

  • Ahn, Ung San;Kim, Dae Sin;Yun, Young Seok;Ko, Suk Hyung;Kim, Kwon Su;Cho, In Sook
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.1
    • /
    • pp.1-28
    • /
    • 2019
  • This study analyzed the density and mortality rate of Korean fir at 9 sites where individuals of Korean firs were marked into the live and dead trees with coordinates on orthorectified aerial images by digital photogrammetric system. As a result of the analysis, Korean fir in each site showed considerable heterogeneity in density and mortality rate depending on the location within site. This make it possible to assume that death of Korean fir can occur by specific factors that vary depending on the location. Based on the analyzed densities and mortality rates of Korea fir, we investigated the correlation between topographic factors such as altitude, terrain slope, drainage network, solar radiation, aspect and the death of Korean fir. The density of Korean fir increases with altitude, and the mortality rate also increases. A negative correlation is found between the terrain slope and the mortality rate, and the mortality rate is higher in the gentle slope where the drainage network is less developed. In addition, it is recognized that depending on the aspect, the mortality rate varies greatly, and the mean solar radiation is higher in live Korean fir-dominant area than in dead Korean fir-dominant area. Overall, the mortality rate of Korean fir in Mt. Halla area is relatively higher in areas with relatively low terrain slope and low solar radiation. Considering the results of previous studies that the terrain slope has a strong negative correlation with soil moisture and the relationship between solar radiation and evaporation, these results lead us to infer that excess soil moisture is the cause of Korean fir mortality. These inferences are supported by a series of climate change phenomena such as precipitation increase, evaporation decrease, and reduced sunshine duration in the Korean peninsula including Jeju Island, increase in mortality rate along with increased precipitation according to the elevation of Mt. Halla and the vegetation change in the mountain. It is expected that the spatial patterns in the density and mortality rate of Korean fir, which are controlled by topography such as altitude, slope, aspect, solar radiation, drainage network, can be used as spatial variables in future numerical modeling studies on the death or decline of Korean fir. In addition, the method of forest distribution survey using the orthorectified aerial images can be widely used as a numerical monitoring technique in long - term vegetation change research.

Prediction of Lateral Flow due to Embankments for Road Construction on Soft Grounds with Vertical Drains (연직배수재가 설치된 연약지반 상에 도로성토로 인한 측방유동 발생 예측)

  • Hong, Won-Pyo;Kim, Jung-Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.6C
    • /
    • pp.239-247
    • /
    • 2012
  • Some methods were proposed to predict lateral flow due to embankments for road constructions on soft grounds, in which vertical drains were placed. In order to investigate the prediction methods of lateral flow, 200 field monitoring data for embankments in thirteen road construction sites at western and southern coastal areas of the Korean Peninsula were analyzed. For analyzing the relationship between the safety factor of embankment slope and the horizontal displacement in soft grounds where horizontal drain mats were placed, it was reliable to apply the maximum horizontal displacement in soft ground instead of the horizontal displacement at ground surface. The maximum horizontal displacement was developed less than 50mm in fields where the safety factor of slope was more than 1.4, while the one was developed more than 100mm in fields where the safety factor of slope was less than 1.2. In safe fields where the maximum horizontal displacement were developed within 50mm, lateral flow would not happen since shear deformation was not appeared. On the other hand, shear failure would happen in the fields where the maximum horizontal displacement were developed more than 100mm. In such fields, embankments might be continued after some appropriate countermeasures should be prepared. Safe embankments can be performed on soft grounds, in which the stability number is less than 3.0 and the safety factor for bearing is more than 1.7. However, if the stability number is more than 4.3 and the safety factor for bearing is less than 1.2, shear deformation would begin and even shear failure would happen.

Evaluation of the Stability Management Methods for Embankments on Soft Clay Using Numerical Analysis (수치해석을 이용한 연약지반 성토 안정관리법 평가)

  • Kim, Jong-Ryeol;Park, Hwa-Joung;Hwang, Soung-Won;Kang, Hee-Bog
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.4
    • /
    • pp.202-208
    • /
    • 2005
  • In Korea it tends to rely on foreign standards for the stability management of the embankment slope on the soft clay layer. The Matsuo-Kawamura's method, the Kurihara's method, the Tominaga- Hashimoto's method and the Shibata-Sekiguchi's method are generally employed at site. In this study these slope stability methods are investigated and the applicability of the stability management methods is evaluated through numerical analysis. It is evaluated that stability is overestimated to some degree by the Matsuo-Kawamura method. According to the result by the Tominaga-Hashimoto method there is some risk of sudden failure. This implies that the careful attention is necessary for the management of monitoring the field data. Even though the stability tends to be underestimated by the Kurihara's method, however, it is estimated that this method is applicable to the field when the probable uncertainty at site is considered. For the Shibata-Sekiguchi's method, there is some difficulties in determining the failure index for the practical application, it is considered as safe when the existing estimated failure index is greater than ${\Delta}_q/{\Delta}{\delta}$. In this study, however, it is evaluated to be safe as well when ${\Delta}_q/{\Delta}{\delta}$ to load shows the tendency of constant increase.

Monitoring the Development Process of Edge Vegetation Structure in Deciduous Broad-leaved Forest( II ) -Focused on the Case Study from the Baekwoonsan Research Forest, Seoul National University- (낙엽 활엽수림 대 주연부식생구조 발달과정 모니 터 링(II) -서울대학교 백운산연습림지역을 중심으로-)

  • Oh Koo-Kyoon;Jee Yong-Ki;Shim Hang-Yong;Kim Sung-Hyun
    • Korean Journal of Environment and Ecology
    • /
    • v.19 no.3
    • /
    • pp.258-268
    • /
    • 2005
  • The objective of this study was to monitor the edge vegetation development process after timber harvesting at deciduous hardwood forest in Seoul National University Research Forest of Baekwoonsan (Mt), Korea The results from the 4th (2001) and 5th (2003) survey for edge vegetation development process after timber harvesting are summarized as follows. The competitive species at the harvested forest edge are Lindera erythrocarpa, Weigela subsessilis, Lespedeza maximowiczii, Lindera obtusiioba, Arajia eiata. There were Lindera erythrocarpa, Ivelgela subsessilis, Staphyiea bumaida as competitive species at harvested forest border between harvested forest edge and harvested interior. And at the forest interior, the competitive species were Lindera erythrocarpa, Lindera obtusiloba. There were differences in the competitive species at the forest edge due to the differences in direction, altitude, and existing dominant species. But Lindera erythrocarpa, Weigela subsessilis were appeared to be a competitive specieg at the southwestern slope (A site) and northeastern slope (B site). After timber harvesting, Sasa borealisshowed a good growth in early days, but showed a tendency of declining with the developing of canopy layer And coverage was generally higher at the Northeastern slope (Site B) than southwestern slop (Site A). The similarity index was lower as the distance from the forest edge becomes farther.