• Title/Summary/Keyword: Slope Management

Search Result 800, Processing Time 0.026 seconds

Risk Evaluation of a Road Slope on Hazard Using 3D Scanner (사면재해 평가의 3차원 스캐닝 기법적용)

  • Kwak, Young-Joo;Jang, Yong-Gu;Kang, In-Joon
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.13 no.2 s.32
    • /
    • pp.45-50
    • /
    • 2005
  • Recently, slope failures are disastrous when they occur in mountainous area adjoining highways. The accidents associated with Slope failures have increased due to rapid urbanization of mountainous area. Therefore, the inspection of slope is conducted to maintain road safety as well as road function. In this study, we apply to the remedy which is comparing existent description to advanced technology using GIS. we utilize a 3D scanner, one of the advanced method, to generate precise and complete road slope model from expert point of view. In result, we are transferred practical data from external slope stability to hazard slope information. We suggest not only the database but also the method of road risk evaluation based on GIS.

  • PDF

A Study on Slope Reinforcing Effects Using Soil Stabilizer (토사안정제를 이용한 비탈면보강 효과에 관한 연구)

  • Kim, Ki-Hwan;Kim, Yu-Tae;Lee, Seung-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.10
    • /
    • pp.5-14
    • /
    • 2010
  • The slope stability method using the soil stabilizer is a way to ensure that the slope stability from reinforcing method is environmentally friendly. However, the reinforcing method does not ensure slope stability for lack of research on the reinforcement effect of the mixture with soil. So the application of this method implies difficult technical issues. In this research, reinforcement effect is investigated according to the different ratio of mixture. And the optimum reinforcement depth is proposed according to the height of slope from numerical analysis. The results show that approximately the soil strength increases from two to three times. From numerical analysis, it is possible to estimate the optimum height according to the height of slope. It is anticipated that the use of soil stabilizer will increase the slope stability.

Characterization of Increases in Volumetric Water Content in Soil Slopes to Predict the Risk of Shallow Failure (토사비탈면 표층붕괴 위험 예측을 위한 체적함수비 증가 특성 연구)

  • Suk, Jae-Wook;Kang, Hyo-Sub;Choi, Sun-Gyu;Jeong, Hyang-Seon;Song, Hyo-Sung
    • The Journal of Engineering Geology
    • /
    • v.30 no.4
    • /
    • pp.485-496
    • /
    • 2020
  • The characteristics of volumetric water content changes in soil slopes were studied here in an effort to identify the signs of heavy rain causing shallow slope failure. Volumetric water contents in cases with and without shallow failure were measured in flume and test-bed experiments. Measurement data from 282 experiments of both types revealed that the volumetric water content gradient in shallow failure events ranged from 0.072 to 0.309. In non-failure cases, the range was 0.01~0.32. Therefore, this one specific value cannot predict shallow slope failure. However, as the volumetric water content gradient increased, there was a clear tendency to shallow failure. By using this trend, criteria for four warning levels are suggested.

Classification and Spatial Variability Assessment of Selected Soil Properties along a Toposequence of an Agricultural Landscape in Nigeria

  • Fawole Olakunle Ayofe;Ojetade Julius Olayinka;Muda Sikiru Adekoya;Amusan Alani Adeagbo
    • Journal of Forest and Environmental Science
    • /
    • v.39 no.3
    • /
    • pp.180-194
    • /
    • 2023
  • This study characterize, classify and evaluates the function of topography on spatial variability of some selected soil properties to assist in designing land management that support uniform agricultural production. The study site, an agricultural land, was part of the derived savanna zone in southwest Nigeria. Four soil profile pits each were established along two delineated toposequence and described following the FAO/UNESCO guidelines. Samples were collected from the identified genetic horizons. Properties of four soil series developed on different positions of the two delineated Toposequence viz upper, middle, lower slopes and valley bottom positions respectively were studied. The soil samples were analysed for selected physical and chemical properties and data generated were subjected to descriptive and inferential statistics. The results showed that soil colour, depth and texture varied in response to changes in slope position and drainage condition. The sand content ranged from 61 to 90% while the bulk density ranged between 1.06 g cm-3 to 1.68 g cm-3. The soils were neutral to very strongly acid with low total exchangeable bases. Available phosphorus value were low while the extractable micronutrient concentration varied from low to medium. Soils of Asejire and Iwo series mapped in the study area were classified as Typic isohyperthermic paleustult, Apomu series as Plinthic isohyperthermic paleustult and Jago series as Aquic psamment (USDA Soil Taxonomy). These soils were correlated as Lixisol, Plinthic Lixisol and Fluvisol (World Reference Based), respectively. Major agronomic constraints of the soils associations mapped in the study area were nutrient availability, nutrient retention, slope, drainage, texture, high bulk density and shallow depth. The study concluded that the soils were not homogenous, shows moderate spatial variation across the slope, had varying potentials for sustainable agricultural practices, and thus, the agronomic constraints should be carefully addressed and managed for precision agriculture.

A Study on the Selection of the Total Pollution Load Management at Tributaries by Evaluation of Water Quality Volatility: Case Study for Chungcheongnam-do (수질변동성 평가를 통한 지류총량제 도입 대상유역 선정에 관한 연구: 충청남도를 중심으로)

  • Jeongho Choi;Hongsu Kim;Byunguk Cho;Sanghyun Park;Mukyu Lee;Byeonggu Lee;Uram Kang
    • Journal of Korean Society on Water Environment
    • /
    • v.39 no.5
    • /
    • pp.377-389
    • /
    • 2023
  • Chungcheongnam-do has been measuring the flow rate and water quality of streams in the province once a month since 2011 in order to water environment policies. Based on the results, after evaluating the coefficient of variation and the tendency of the water quality trend by using the Mann-Kendall test and Sen's Slope for each stream, the streams subject to priority introduction of Total Pollution Load Management at Tributaries were selected through the Stream Grouping Method. The water quality trend analysis results for 125 streams using the Mann-Kendall test and Sen's Slope were evaluated as streams showing a tendency of deteriorating water quality Biochemical oxygen demand (BOD): 13 streams, Total Phosphorus (T-P): 16 streams). Streams with deteriorating water quality were classified into A-D groups using the Stream Grouping Method. Group A, which has a high flow rate and high water quality, is a stream that requires priority management, and was selected as a stream for introduction of Total Pollution Load Management at Tributaries. There are 7 streams that need to be introduced into the BOD category, and there are 7 streams that need to be introduced into the T-P category. In this study, based on flow and water quality monitoring data accumulated over a long period of time (2011-2022), statistical techniques are used to select watersheds in which water quality is deteriorating. Accordingly, it is expected that it will be useful in establishing a water quality improvement plan in the future.

Statistical Estimate Technique of Cut Slope Stability (깎기비탈면 안정성의 통계적 예측기법)

  • Lee, Moon-Se;Shin, Chang-Gun;Jeon, Kuk-Jae;Lee, Seung-Woo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.727-735
    • /
    • 2010
  • The collapse of cut slope near national roads in Korea mostly occurs in every summer when typhoon or localized heavy rain comes. Such collapse brings about a loss of many lives and property and recently the damage is on rapidly increasing trend. Therefore, we may reduce the loss of many lives and property in great deals if we can predict and prepare for the collapse of cut slope. However, it is not easy to predict collapse because there are many factors causing collapse in combination and all they have different levels of contribution. Therefore, this study completed prediction formula by using a statistic technique for quantitative analysis on the interaction of those factors so as to predict the stability of slopes. Consequently, it is judged that effective slope management will be possible by selecting dangerous slopes quantitatively among cut slopes near national roads and by preparing for the collapse in advance.

  • PDF

Analysis of Slope Stability of Masonry Retaining Walls in Quarry (석산개발 지역 퇴적장 석축사면의 안정성 해석)

  • Ma, Ho-Seop;Lee, Sung-Jae
    • Journal of Korean Society of Forest Science
    • /
    • v.107 no.4
    • /
    • pp.385-392
    • /
    • 2018
  • The slope stabilization analysis was performed by conducting survey and selecting the representative section in order to improve slope composition and management technology of masonry embankments in the quarry area, The mean slope of the masonry retain wall (A, B, C, D, E, F) was $38.5^{\circ}$, although the steep slope of the lowest slope (A) as $59^{\circ}$. The horizontal distance of the masonry embankments is 66.2 m and the slope height is 48.3 m. However, the inclination of the masonry embankments is relatively steep and visually unstable. The slope stability analysis for the slope stability analysis was taken into account during the drying and saturation. The slope stability analysis during saturation was performed by modeling the fully saturated slope. The strength constants of the ground were divided into two groups. The safety factor for dry period was 1.850 and the safety factor for rainy season was 1.333. The safety rate of dry period and rainy season was above 1.5 and 1.2. However, the weathered granite on the upper part of the masonry embankments at the time of heavy rainfall is considered to have a high risk of slope erosion and collapse. Therefore, it is considered necessary to take measures for stabilization through appropriate maintenance such as drainage installation.