• Title/Summary/Keyword: Slippage

Search Result 203, Processing Time 0.034 seconds

Observation of Dynamic Movement of Probing Pin on PCB Pad Using Electrical Reliability Test (인쇄회로 기판의 전기검사에서의 미세 탐침과 패드의 동적 거동 현상 관측)

  • Song, Seongmin;Cha, Gangil;Kim, Myungkyu;Jeon, Seungho;Yu, SangSeok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.3
    • /
    • pp.245-251
    • /
    • 2015
  • In an electrical reliability test of a printed circuit board (PCB), the impact of the micro probing pins on the PCB needs to be checked to ascertain the quality of the circuit. In this study, the impact of the dynamic movement of the probing pin on the pad was observed. As a misaligned pin can exert horizontal force on the pad of the PCB, this study focused on the behavior of a misaligned probing pin. The parameters of observation were the circular and flat edges of the probing pin. The effects of the speed of movement, diameter, and the length of projection of the probing pin were also investigated. The results demonstrated that slippage angle is strongly affected by the shape of the edge of the probing pin, and that projection length is an important factor affecting pin slippage. In contrast, the speed of movement of the probing pin was able to double the slippage angle.

An Experimental Study and Value Analysis for Performance Assessment of the Embo-thane Membrane Waterproofing Method (엘보탄도막방수공법의 성능평가를 위한실험적 연구 및 VE분석)

  • Yoon, Cha-Woong;Lee, Seung-Soo;Kim, Sang-Rok;Seo, Jong-Won
    • Korean Journal of Construction Engineering and Management
    • /
    • v.10 no.5
    • /
    • pp.123-134
    • /
    • 2009
  • Since 1970s, urethane waterproofing method is broadly used in rooftops, underground spaces, and sports stadium for its outstanding ultraviolet blockage, watertightness, and elasticity. However, development of slippage-resistance and endurance, improvement of function considering convenience and visually pleasing of users, urethane waterproofing method is necessary, since rooftops and underground spaces have slippage and external force risks. Therefore, many improved waterproofing methods are being developed and, recently, embo-thane waterproofing method, which applies embo-spray coating system, has been developed. This paper explains exposure, nonexposure, and floor-material of embo-thane waterproofing method, and then perform experimental study for comparison with urethane waterproofing method about tensile strength, coefficient of expansion, performance of bond, anti-abrasion, and slippage-resistance. In addition, the performance index was presented for the superiority of embo-thane waterproofing method compared to urethane by setting up evaluation criteria considering not only physical performance but also design side of embo-thane waterproofing method, and Value Analysis applying AHP. Also for an assessment considering uncertain result, Monte Carlo Simulation Method was used to operate reliability analysis through statistic approach method.

Optimal Wheel Slip Control for Vehicle Stability During Cornering (선회시 차량의 주행 안정성을 위한 최적의 구동차륜 슬립제어)

  • 박종현;김찬영
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.4
    • /
    • pp.190-198
    • /
    • 1997
  • Traction control systems are used to prevent the wheel slippage and to maximize the traction force. A new scheme of controlling the wheel slip during cornering by varying the slip ration as a function of the slip angle is proposed and dynamically simulated with the model of a front wheel driven passenger vehicle. Simulation results show that the proposed scheme is superior to conventional ones based on the fixed slip ratio during cornering and lane changes.

  • PDF

Control of Biped Locomotion on A Slippery Surface (미끄러운 노면에 적응하는 2족 보행 로봇의 제어)

  • 권오홍;박종현
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.41-41
    • /
    • 2000
  • biped robots are expected to robustly traverse terrain with various unknown surfaces. The robot will occasionally encounter the unexpected events in made-for human environments. The slipping is a very real and serious problem in the unexpected events. The robot system must respond to the unexpected slipping after it has occurred and before control is lost. This paper proposes a reflex control method for biped robots to recover from slipage. Computer simulations with the 6-DOF environment model which consists of nonlinear dampers, nonlinear springs, and linear springs, show that the proposed method is effective in preventing fall-down due to slippage.

  • PDF

Unstable Torsional Vibration on the Propulsion Shafting System with Diesel Engine Driven Generator (디젤엔진 구동 발전기를 갖는 추진축계의 불안정한 비틀림진동)

  • 이돈출
    • Journal of KSNVE
    • /
    • v.9 no.5
    • /
    • pp.936-942
    • /
    • 1999
  • Unstable torsional vibration on the marine ship's propulsion shafting system with diesel engine occurred due to a slippage of multi-friction clutch which was installed between increasing gear and shaft generator. In this paper, the mechanism of this vibration was verified via torsional, whirling, axial and structural vibration measurements of shafting system and noise measurement of gear box. And it was also identified by the theoretical analysis method.

  • PDF

A Theoretical Investigation on the Generation of Strength in Staple Yarns

  • Ghosh Anindya
    • Fibers and Polymers
    • /
    • v.7 no.3
    • /
    • pp.310-316
    • /
    • 2006
  • In this article, an attempt has been made to explain the failure mechanism of spun yams. The mechanism includes the aspects of generation and distribution of forces on a fibre under the tensile loading of a yam, the free body diagram of forces, the conditions for gripping and slipping of a fibre, and the initiation, propagation, and ultimate yam rupture in its weakest link. A simple mathematical model for the tenacity of spun yams has been proposed. The model is based on the translation of fibre bundle tenacity into the yam tenacity.

Traction Model of Rigid Wheels (강체차륜(剛體車輪)의 견인력(牽引力) 추정(推定) 모형(模型))

  • Cho, B.Y.;Kim, K.U.
    • Journal of Biosystems Engineering
    • /
    • v.14 no.3
    • /
    • pp.151-157
    • /
    • 1989
  • A mathematical model was developed to predict traction forces of rigid wheels. The modeling was based on the energy principle that the total energy delivered to a driving wheel is equal to the works done by the useful traction force and motion resistance of that wheel. The effect of the wheel slippage was also included in the modeling. Verification of the proposed model was provided by comparing the tractive coefficients predicted by the model to those obtained experimentally at the in-door soil bin tests. The model predictions were found to be a reasonable agreement with the experimental results.

  • PDF

Experimental research on the evolution characteristics of displacement and stress in the formation of reverse faults

  • Chen, Shao J.;Xia, Zhi G.;Yin, Da W.;Du, Zhao W.
    • Geomechanics and Engineering
    • /
    • v.23 no.2
    • /
    • pp.127-137
    • /
    • 2020
  • To study the reverse fault formation process and the stress evolution feature, a simulation test system of reverse fault formation is developed based on the analysis of reverse fault formation mechanism. The system mainly consists of simulation laboratory module, operation console and horizontal loading control system, and data monitoring system. It can represent the fault formation process, induce fault crack initiation and simulate faults of different throws. Simulation tests on reverse fault formation process are conducted by using the simulation test system: horizontal loading is added to one side of the model. the bottom rock layer cracks under the effect of the induction device. The crack dip angle is about 29°. A reverse fault is formed with the expansion of the crack dip angle towards the upper right along the fracture surface and the slippage of the hanging wall over the foot wall. Its formation process unfolds five stages: compressive deformation of rock, local crack initiation, reverse fault penetration, slippage of the hanging wall over the foot wall and compaction of fault plane. There is residual structural stress inside rock after fault formation. The study methods and results have guiding and referential significance for further study on reverse fault formation mechanism and rock stress evolution.

The Study on Attrition Resistance of ZnO/natural-zeolite/Fe$_2$O$_3$ Desulfurization Sorbents with CaO for Hot Gas Clean-up (산화칼슘이 첨가된 ZnO/Natural-zeolite/Balho Kim/Fe$_2$O$_3$ 탈황제의 내마모성특성 연구)

  • 정용길;박노국;이종대;전진혁;류시옥;이태진
    • Journal of Energy Engineering
    • /
    • v.13 no.1
    • /
    • pp.75-81
    • /
    • 2004
  • ZZFCa sorbents for hot gas desulfurization in IGCC were prepared by adding calcium oxide to ZZF sorbent in order to improve its attrition resistance in this study. ASTM attrition test for the sorbent was performed at several different weight percentages of CaO to investigate the attrition characteristics of ZBFCa sorbents as a function of CaO content. Attrition index of ZZF without CaO was 28.3% and its collected attrition index was 10.8%. ZZFCa-3 containing 3 wt% CaO showed the lowest attrition index (AI=17.3%, CAI=8.8%) in the test. From the results of SEM morphologies and particle size distribution measurements, ZZFCa-3 maintained a fine shape and a desirable average particle size even after attrition test. In the experiments of sulfidation/regeneration for ZZFCa-3 sorbent concentration of hydrogen sulfide in coal gas was lowered from 10000 ppm to below 1 ppm. Sulfur removing capacity was about 28.8 g S/100 g sorbent. Neither formation of CaSO$_4$ was observed in XRD measurement nor SO$_2$ slippage was observed during sulfidation process.