• 제목/요약/키워드: Slip system.

검색결과 921건 처리시간 0.02초

Side Slip Angle Based Control Threshold of Vehicle Stability Control System

  • Chung Taeyoung;Yi Kyongsu
    • Journal of Mechanical Science and Technology
    • /
    • 제19권4호
    • /
    • pp.985-992
    • /
    • 2005
  • Vehicle Stability Control (VSC) system prevents vehicle from spinning or drifting out mainly by braking intervention. Although a control threshold of conventional VSC is designed by vehicle characteristics and centered on average drivers, it can be a redundancy to expert drivers in critical driving conditions. In this study, a manual adaptation of VSC is investigated by changing the control threshold. A control threshold can be determined by phase plane analysis of side slip angle and angular velocity which is established with various vehicle speeds and steering angles. Since vehicle side slip angle is impossible to be obtained by commercially available sensors, a side slip angle is designed and evaluated with test results. By using the estimated value, phase plane analysis is applied to determine control threshold. To evaluate an effect of control threshold, we applied a 23-DOF vehicle nonlinear model with a vehicle planar motion model based sliding controller. Controller gains are tuned as the control threshold changed. A VSC with various control thresholds makes VSC more flexible with respect to individual driver characteristics.

On the Motion of the Structure Varying Multibody Systems with Two-Dimensional Dry Friction

  • Xie Fujie;Wolfs Peter;Cole Colin
    • Journal of Mechanical Science and Technology
    • /
    • 제19권4호
    • /
    • pp.927-935
    • /
    • 2005
  • In the present paper the dynamics of the structure varying multibody systems caused by stick-slip motion with two-dimensional dry friction are analyzed. The methods to determine friction force both in stick and slip states are described. The direct method of considering the wagon bogie system as a structure varying system was used to consider two dimensional friction at the wheelset-side frame connection. The concept of friction direction angle used to determine the friction force components of two-dimensional dry friction both in the stick and slip motion states was used. A speed depended friction coefficient was used and described approximately by hyperbolic secant function. All switch conditions were derived and friction forces both for stick and slip states. Some simulation results are provided.

퍼지 논리 시스템을 이용한 자율 이동 로봇의 슬립 보정 (Slip Compensation of Autonomous Mobile Robot Using Fuzzy Logic System)

  • 강성호;김주웅;이용구;정경권;엄기환
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2005년도 추계종합학술대회
    • /
    • pp.399-402
    • /
    • 2005
  • 본 논문에서는 이동로봇의 슬립을 고려하여 슬립 발생 시 이동 로봇의 위치를 퍼지논리 시스템을 이용하여 보정하는 방식을 제안한다. 퍼지 논리 시스템의 뛰어난 추론능력으로 슬립을 추론 할 수 있을 것이다. 제안된 방식의 유용성을 확인하기 위하여 differential 구동형 로봇의 슬립을 모델링 하고, 추정오차에 대하여 시뮬레이션한 결과 우수한 성능을 확인 하였다.

  • PDF

휠 슬립 제어기 및 최적 슬립 결정 알고리즘을 이용한 차량의 최대 제동력 제어 (Maximum Braking Force Control Using Wheel Slip Controller and Optimal Target Slip Assignment Algorithm in Vehicles)

  • 홍대건;황인용;선우명호;허건수
    • 대한기계학회논문집A
    • /
    • 제30권3호
    • /
    • pp.295-301
    • /
    • 2006
  • The wheel slip control systems are able to control the braking force more accurately and can be adapted to different vehicles more easily than conventional ABS systems. In order to achieve the superior braking performance through the wheel-slip control, real-time information such as the tire braking force at each wheel is required. In addition, the optimal target slip values need to be determined depending on the braking objectives such as minimum braking distance, stability enhancement, etc. In this paper, a robust wheel slip controller is developed based on the adaptive sliding mode control method and an optimal target slip assignment algorithm. An adaptive law is formulated to estimate the longitudinal braking force in real-time. The wheel slip controller is designed using the Lyapunov stability theory and considering the error bounds in estimating the braking force and the brake disk-pad friction coefficient. The target slip assignment algorithm is developed for the maximum braking force and searches the optimal target slip value based on the estimated braking force. The performance of the proposed wheel-slip control system is verified In simulations and demonstrates the effectiveness of the wheel slip control in various road conditions.

이중 블록 계통의 비선형 지진응답 특성 (Response Characteristics of Two Block System under Seismic Base Excitation)

  • 신태명
    • 대한기계학회논문집A
    • /
    • 제33권11호
    • /
    • pp.1288-1293
    • /
    • 2009
  • This paper discusses about modeling method to simulate a nonlinear behavior like sliding or rocking of two stacked body system under earthquake condition. A double body system design can be an option to reduce seismic response of a component in comparison to a single body system for free standing structures. Therefore, according to the priority of components, the structure is to be designed by proper ratio of partition in their height for improvement of seismic capability and structural integrity. Nonlinear modeling and analysis using simple rigid body and dynamic system has been performed to check the trend in such cases. As a result, one of the two bodies can be chosen to reduce the seismic response from energy absorption of the other one by appropriate application of friction ratios not only in slip-slip condition but in slip-rock condition.

구동륜 슬립이 견인성능에 미치는 영향 (Effect of Slip on Tractive Performance of Driving Wheel)

  • 박원엽
    • 한국자동차공학회논문집
    • /
    • 제10권1호
    • /
    • pp.234-243
    • /
    • 2002
  • When a vehicle is operated over sort terrain, torque(or soil thrust) applied to driving wheel brings about shear displacement far soil due to compression and shear failure of soil under tire. This shear displacement give rise to slip and a additional sinkage due to slip. This additional sinkage is usually referred to as slip-sinkage. The slip-sinkage is affected by soil conditions and inflation pressure of tire. This slip-sinkage influence tractive performance on driving wheel . We conducted the experimental study far investigating the effect of slip on sinkage and tractive performance of driving wheel, such as motion resistance, thrust and drawbar pull. The experiment was carried out over three different soil conditions(soft, hard and very hard soil) far a tire with three levels of inflation pressure(120kPa, 240kPa and 360kPa). The results of this study show qualitatively slipsinkage characteristics and slip-tractive performance relationships of driving wheel with soil conditions and inflation pressure of tire.

외란 관측기를 이용한 이동 로봇의 슬립 제어 (Anti-Slip Control for Wheeled Robot Based on Disturbance Observer)

  • 권선구;허욱열;김진환;김학일
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.50-52
    • /
    • 2004
  • Mobility of an indoor wheeled robot is affected by adhesion force that is related to various floor conditions. When the adhesion force between driving wheels and the floor decreases suddenly, the robot has slip state. First of all, this paper models adhesion characteristics and slip in wheeled robot. Secondly, the paper proposes estimation method of adhesion force coefficient according to slip velocity. In oder to overcome this slip problem, optimal slip velocity must be decided for stable movement of wheeled robot. The paper proposes an anti-slip control system based on an ordinary disturbance observer, that is, the anti-slip control is achieved by reducing the driving torque enough to give maximum adhesion force coefficient. These procedure is implemented using a Pioneer 2-DXE parameter.

  • PDF

마찰을 고려한 차량 동력전달계의 Stick-Slip 현상에 관한 연구 (A Study on the Stick-Slip Phenomenon of the Driveline System of a Vehicle in Consideration of Friction)

  • 윤영진;홍동표;정태진
    • 한국자동차공학회논문집
    • /
    • 제3권4호
    • /
    • pp.19-29
    • /
    • 1995
  • This paper discusses the stick-slip phenomenon of the driveline system of a vehicle in consideration of friction. Friction is operated on the between of flywheel and clutch disk. The expressions for obtaining the results have been derived from the equation of motion of a three degree of freedom frictional torsion vibration system which is made up driving part(engine, flywheel), driven part(clutch, transmission) and dynamic load part(vehicle body) by applying forth-order Rungekutta method. It was found that the great affect parameters of the stick-slip or stick motion were surface pressure force between flywheel and clutch disk, time decay parameter of surface pressure force and 1st torsional spring constant of clutch disk when driveline system had been affected by friction force. The results of this study can be used as basic design data of the clutch system for the ride quality improvement of a car.

  • PDF

Brake-by-Wire 시스템을 위한 강인한 휠 슬립 제어 (Robust Wheel Slip Control for Brake-by-Wire System)

  • 홍대건;허건수;강형진;윤팔주;황인용
    • 한국자동차공학회논문집
    • /
    • 제13권3호
    • /
    • pp.102-109
    • /
    • 2005
  • Wheel-slip control systems are able to control the braking force more accurately and can be adapted to different vehicles more easily than conventional ABS systems. But, in order to achieve the superior braking performance through the wheel-slip control, real-time information such as the tire braking force is required. For example, in the case of EHB (Electro-Hydraulic Brake) systems, the tire braking force cannot be measured directly, but can be approximated based on the characteristics of the brake disk-pad friction. The friction characteristics can change significantly depending on aging of the brake, moisture on the contact area, heat etc. In this paper, a wheel slip The proposed wheel slip control system is composed of two subsystems: braking force monitor and robust slip controller In the brake force monitor subsystem, the tire braking forces as well as the brake disk-pad friction coefficient are estimated considering the friction variation between the brake pad and disk. The robust wheel slip control subsystem is designed based on sliding mode control methods and follows the target wheel-slip using the estimated tire braking forces. The proposed sliding mode controller is robust to the uncertainties in estimating the braking force and brake disk-pad friction. The performance of the proposed wheel-slip control system is evaluated in various simulations.

자유도 변화 시스템의 해석에 사용되는 마찰 모델의 비교 (Comparison of Friction model on the variable DOE system)

  • 이진원;조형준;장욱진;임원식;이장무
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.672-677
    • /
    • 2000
  • This paper compares the two kinds of friction model. The first model is classical stick/slip model. In the stick/slip model, the system is treated to have two different states, namely, stick state or slip state. The second one is continuous model developed by Dahl et. al, namely, Extended Dahl's model. Each model has unique properties, and can be best useful when it is applied on the appropriate system. In this paper, each model is applied on the simple two-block system and the complex automatic transmission system. And the simulation result including simulation accuracy and time required are compared.

  • PDF