• Title/Summary/Keyword: Slip distribution

Search Result 270, Processing Time 0.023 seconds

Identification of high-dip faults utilizing the GRM technique of seismic refraction method(Ⅱ) -Application to real data- (굴절파 GRM 해석방법을 응용한 고경사 단층 인지 (Ⅱ) -실제 자료 적용-)

  • Kim, Gi Yeong;U, Nam Cheol
    • Journal of the Korean Geophysical Society
    • /
    • v.2 no.1
    • /
    • pp.65-74
    • /
    • 1999
  • From refraction data along four seismic profiles near Eonyang which the Yangsan fault passes through, the Slope Variation Indicators (SVI) are computed and interpreted in terms of fault distribution. The average velocities of 2,250-2,870 m/s are estimated using velocity-analysis functions for the target boundary along those profiles. The average velocity for Line 1 is approximately 600 m/s lower than ones for the other lines. The SVI's with amplitude greater than or equal to 0.5 ms/m are turned out to be located near faults shown on the high-resolution reflection section, as closely as one station spacing (3 m). Large amplitude SVI's are densely distributed near National Road 35, and the fault having the largest vertical slip is indicated to be located approximately 930 m west of the inferred fault on the published geologic map.

  • PDF

Study on NOx Reduction with Multi-Perforated Tube Geometry in Integrated Urea-SCR Muffler (촉매삽입형 Urea-SCR 머플러 다공튜브 형상변화에 따른 NOx 저감 특성에 관한 연구)

  • Moon, Namsoo;Lee, Sangkyoo;Ko, Sangchul;Lee, Jeekeun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.12
    • /
    • pp.1017-1026
    • /
    • 2014
  • A multi-perforated tube is generally installed between the muffler inlet and in front of selective catalytic reduction (SCR) catalysts in the integrated urea-SCR muffler system in order to disperse the urea-water solution spray uniformly and to make better use of the SCR catalyst, which would result in an increase nitrogen oxide ($NO_x$) reduction efficiency and a decrease in the ammonia slip. The effects of the multi-perforated tube orifice area ratios on the internal flow characteristics were investigated analytically by using a general-purpose commercial software package. From the results, it was clarified that the multi-perforated tube geometry sensitively affected the generation of the bulk swirling motion inside the plenum chamber set in front of the SCR catalyst and to the uniformity index of the velocity distribution produced at the inlet of the catalyst. To verify the analytical results, engine tests were carried out in the ESC and ETC modes. Results of these tests indicated that the larger flow model in the longitudinal direction showed the highest NOx reduction efficiency, which was a good agreement with the analytical results.

Displacement of Geumwang Fault around the Pungam Basin Observed by Gravity and Aeromagnetic Field Interpretation (중력장 및 자기장 해석에 따른 풍암분지 일원 금왕단층의 지구조적인 변위)

  • Sungchan Choi;Sung-Wook Kim;Eun-Kyeong Choi;Younghong Shin
    • Economic and Environmental Geology
    • /
    • v.57 no.4
    • /
    • pp.363-370
    • /
    • 2024
  • To analyze the tectonic movements of the Geumwang Fault and its association with development of the Pungam Basin, the distributions of the gravity field and aeromagnetic field were interpreted. The low gravity zone (LGZ) around the Geumwang Fault shows an asymmetrical distribution, indicating sinistral (left-lateral) movement with the left side of the fault moving southeastward. The observed gravity anomaly suggests a displacement of approximately 9.3 km. The aeromagnetic distribution supports this horizontal displacement with very distinct magnetic characteristics. Using Euler deconvolution, the average depth of the Geumwang Fault was calculated to be about 1,000 meters, and it is estimated that the southwest side of the Pungam Basin is approximately 700 meters deeper than the northeast side. This strongly suggests that the Geumwang Fault has moved not only in a strike-slip but also in a dip direction. Such fault movement is characteristic of a hinge fault and has contributed to the formation of the basin through fault margin sag.

Compressive Stress Distribution of High Tension Bolted Joints (고장력 볼트 이음부의 내부 압축응력 분포)

  • Kim, Sung Hoon;Lee, Seung Yong;Choi, Jun Hyeok;Chang, Dong Il
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.2 s.31
    • /
    • pp.171-179
    • /
    • 1997
  • The high-tension bolted joints are clamped by the axial force which approaches the yielding strength. The introduced axial force is transmitted to the connection members pass through washer. The transferred load in connections is balanced to the compressive stress of plates, axial force in bolts and the external loads. In this mechanism, the compressive stress and slip load we dominated by the effective stiffness of bolted joints and plates. In general the effective stiffness is specified to product to the effective area and elasticity modulus in connections. In this reason, the conic projection formular which is assumed that the axial force in bolts is distributed to the cone shape and that region is related to the elastic deformation mechanism in connections, was proposed. But it conclude what kind of formula is justified. Therefore in this paper, the fatigue tests are performed to the high tension bolted joints and inspected to the phase on the friction face. And using the FEM and numerical method, it is analyzed and approximated to the compressive stress distribution and its region. Moreover, it is estimated to the effective area and to the relation the friction area to the effective compressive distribution region.

  • PDF

Finite Element Analysis of Transfer Length in Pretensioned Prestressed Concrete Members (프리텐션 PSC부재의 전달길이 해석 및 예측에 관한 연구)

  • Oh Byung-Hwan;Lim Si-Nae;Choi Young-Cheol
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.3 s.81
    • /
    • pp.293-302
    • /
    • 2004
  • The transfer of prestress force in pretensioned prestressed concrete (PSC) members is of great concern because it affects directly the distribution of stress around the transfer zone. The design provision of current design code on the transfer length considers only the prestress intensity and the diameter of prestressing steels. However, other factors such as concrete compressive strength and concrete cover may affect greatly the transfer length. The purpose of the present paper is to explore the various factors that affect the transfer length in pretensioned PSC members. The bond stress-slip relation between prestressing steel and concrete was modeled first from experimental data and then this model was incorporated into the interface element. The interface element was used to perform the finite element analysis for pretensioned PSC members. The results indicate that the compressive strength and concrete cover are also very important parameters which affect the transfer length greatly. This means that the current design code, which considers only the effective prestress and diameter of prestressing steel, must be improved to take into account the other important variables of compressive strength and concrete cover. The present study allows more realistic analysis and design of pretensioned PSC members.

Geological Structures and Evolution of the Tertiary Chŏngja Basin, Southeastern Margin of the Korean Peninsula (울산군 강동면 제 3기 정자분지(亭子盆地)의 지질구조와 분지발달)

  • Son, Moon;Kim, In-Soo
    • Economic and Environmental Geology
    • /
    • v.27 no.1
    • /
    • pp.65-80
    • /
    • 1994
  • The Tertiary $Ch{\check{o}}ngja$ basin is located in the southeastern coastal area of the Korean Peninsula. It is a lozenge shaped fault-bounded basin with circa $5{\times}5km$ areal extent, isolated from other Tertiary basins by the Cretaceous Ulsan Formation in-between. The northwestern boundary of the basin is a domino/listric type normal fault trending $N30^{\circ}E$, whereas its southwestern boundary is a dextral strike-slip fault (trending $N20^{\circ}W$) with a lateral offset of more than 1 km. The basin is bounded by the East Sea on the eastern margin. Basin-fills consist of extrusive volcanic rock (Tangsa Andesites) of Early Miocene (16~22 Ma in radiometric age), unconsolidated fluviatile conglomerate (Kangdong Formation) and shallow brackish-water sandstone ($Sinhy{\check{o}}n$ Formation). The latter yields abundant Vicarya-Anadara molluscan fossils of early Middle Miocene age. The Tertiary strata become younger toward the northwestern boundary-fault of the basin, showing a zonal distribution pattern parallel to the fault: the younger sedimentary formations occupy a narrow zone of 2 km width along the northwestern boundary-fault, whereas the older Tangsa Andesites underlie them unconformably in the eastern and southeastern portions of the basin. The strata in the basin, including the Tangsa Andesites, are tilted (about $20^{\circ}$) toward the northwestern boundary-fault Sedimentary strata thicken toward the boundary-fault, forming a wedge shaped half-graben structure. A number of small-scale syndepositional normal growth faults and graben structures are observed in the sedimentary strata. These extensional structures have the same trend as the normal northwestern boundary-fault which we interpret as a pull-apart detachment fault. These characteristics imply persistent extension during the basin evolution, caused by a NW-SE directed tensional force. The $Ch{\check{o}}ngja$ basin is, thus, a kind of syndepositional tectonic basin evolved in a strike-slip (pull-apart) regime. The latter was caused by a dextral simple shear associated with the NNW-SSE opening of the East Sea. In view of the fact that the normal growth faults do not cut through the uppermost portion of the youngest $Sinhy{\check{o}}n$ Formation, it is inferred that the tensional force came to be inactive in the early Middle Miocene. This is coincident in timing with the termination of the East Sea opening (15 Ma).

  • PDF

Coupled Finite Element Analysis of Partially Saturated Soil Slope Stability (유한요소 연계해석을 이용한 불포화 토사사면 안전성 평가)

  • Kim, Jae-Hong;Lim, Jae-Seong;Park, Seong-Wan
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.4
    • /
    • pp.35-45
    • /
    • 2014
  • Limit equilibrium methods of slope stability analysis have been widely adopted mainly due to their simplicity and applicability. However, the conventional methods may not give reliable and convincing results for various geological conditions such as nonhomogeneous and anisotropic soils. Also, they do not take into account soil slope history nor the initial state of stress, for example excavation or fill placement. In contrast to the limit equilibrium analysis, the analysis of deformation and stress distribution by finite element method can deal with the complex loading sequence and the growth of inelastic zone with time. This paper proposes a technique to determine the critical slip surface as well as to calculate the factor of safety for shallow failure on partially saturated soil slope. Based on the effective stress field in finite element analysis, all stresses are estimated at each Gaussian point of elements. The search strategy for a noncircular critical slip surface along weak points is appropriate for rainfall-induced shallow slope failure. The change of unit weight by seepage force has an effect on the horizontal and vertical displacements on the soil slope. The Drucker-Prager failure criterion was adopted for stress-strain relation to calculate coupling hydraulic and mechanical behavior of the partially saturated soil slope.

Fabrication of Nano $Y_{2}O_{3}-CeO_{2}$ Sintered Body Using Dispersion Stability (분산 안정성을 이용한 나노 $Y_{2}O_{3}-CeO_{2}$ 소결체의 제조)

  • Kim, Eun-Jung;Lee, Sang-Hoon;Choi, Sung-Churl
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.9
    • /
    • pp.853-859
    • /
    • 2001
  • The dispersion stability of nano $Y_2O_3-CeO_2$ system was investigated using colloid surface chemistry. Green body of $Y_2O_3$ doped $CeO_2$ was prepared by slip casting in and aqueous system. The dispersion stability of suspension between powders and organic additive was accomplished through electrokinetic behavior of suspension, which was done by ESA apparatus. The dynamic mobility of particles was enhanced when the anionic dispersant of the amount of 1wt% was added. The dissolution of $Y^{3+}$ ion in suspension occurred in the acidic region so that pH value in slurries did not move to below 7.0. In the $CeO_2-Y_2O_3$ system, optimal preparation of suspension was made after adding the anionic dispersant as the amount of 1wt% and pH value of 11.0, and then slip-cast and sintered at 1400$^{\circ}$C, 2 hrs. It appeared relative density of >98% and homogeneous distribution of Y element in depth direction as well as in the microstructure of surface.

  • PDF

Characteristics of Fracture Systems in Southern Korea (우리나라 단열구조의 특성)

  • 김천수;배대석;장태우
    • The Journal of Engineering Geology
    • /
    • v.13 no.2
    • /
    • pp.207-225
    • /
    • 2003
  • According to the data analysis of the regional fracture systems in southern Korea, the fracture orientations show three dominant sets : NNE, NW and WNW. A NNE set is the most abundant and includes most of the largest fractures. The highest fracture density is shown in the Taebaegsan mineralized area corresponding to Ogchon nonmetamorphic belt and the lowest one in the southwestern area of southern Korea. In addition, the density is higher in nonmetamorphic sedimentary rocks such as Choseon Supergroup. Pyeongan Supergroup, Daedong Supergroup and Kyeongsang Supergroup than in Precambrian basements and Jurassic granites. The regional fractures in southern Korea can be classified into four orders designated $F_1,{\;}F_2,{\;}F_3{\;}and{\;}F_4${\;}and{\;}F_4$ on the basis of their trace length. It is quite significant that fractures of each order are self-similar with respect to orientation and the combined fracture length distribution indicates a power-law distribution with an exponent of -2.04. As fractures were analyzed based on the tectonic provinces, Gyeonggj Massif and Kyeongsang Basin have all orders of fractures from $F_1$ to $F_4$. Most of the large scale faults may be ascribed to the products of slip accumulation through multiple deformation. Others besides $F_1$ fractures are thought to be evenly distributed through the whole area of southern Korea.

Coupled Hydro-Mechanical Modelling of Fault Reactivation Induced by Water Injection: DECOVALEX-2019 TASK B (Benchmark Model Test) (유체 주입에 의한 단층 재활성 해석기법 개발: 국제공동연구 DECOVALEX-2019 Task B(Benchmark Model Test))

  • Park, Jung-Wook;Kim, Taehyun;Park, Eui-Seob;Lee, Changsoo
    • Tunnel and Underground Space
    • /
    • v.28 no.6
    • /
    • pp.670-691
    • /
    • 2018
  • This study presents the research results of the BMT(Benchmark Model Test) simulations of the DECOVALEX-2019 project Task B. Task B named 'Fault slip modelling' is aiming at developing a numerical method to predict fault reactivation and the coupled hydro-mechanical behavior of fault. BMT scenario simulations of Task B were conducted to improve each numerical model of participating group by demonstrating the feasibility of reproducing the fault behavior induced by water injection. The BMT simulations consist of seven different conditions depending on injection pressure, fault properties and the hydro-mechanical coupling relations. TOUGH-FLAC simulator was used to reproduce the coupled hydro-mechanical process of fault slip. A coupling module to update the changes in hydrological properties and geometric features of the numerical mesh in the present study. We made modifications to the numerical model developed in Task B Step 1 to consider the changes in compressibility, Permeability and geometric features with hydraulic aperture of fault due to mechanical deformation. The effects of the storativity and transmissivity of the fault on the hydro-mechanical behavior such as the pressure distribution, injection rate, displacement and stress of the fault were examined, and the results of the previous step 1 simulation were updated using the modified numerical model. The simulation results indicate that the developed model can provide a reasonable prediction of the hydro-mechanical behavior related to fault reactivation. The numerical model will be enhanced by continuing interaction and collaboration with other research teams of DECOVALEX-2019 Task B and validated using the field experiment data in a further study.