• Title/Summary/Keyword: Slip Loss

검색결과 85건 처리시간 0.019초

2기통 소형 터보가솔린엔진에서 배기 밸브 타이밍 제어에 따른 LIVC, EIVC 상태에서의 엔진 효율 영향 (Effect of Controlling Exhaust Valve Timing on Engine Efficiency in LIVC and EIVC States in a 2-Cylinder Small Turbo Gasoline Engine)

  • 장진영;우영민;신영진;고아현;정용진;조종표;김강출;표영덕;한명훈
    • 한국분무공학회지
    • /
    • 제27권3호
    • /
    • pp.117-125
    • /
    • 2022
  • This study examines whether engine fuel efficiency is improved by optimization of the exhaust valve timing in a state where the intake valve timing has been optimized in a small turbo gasoline engine that has intake cams and exhaust cams with fixed valve opening periods. When the exhaust valve is opened late, the expansion stroke is longer, and the efficiency can be improved. A 2-cylinder turbo gasoline engine with 0.8 liters of displacement and an MPI (Multi Point Injection) fuel system was used. The engine was operated at 1,500 and 3,000 rpm, and the load conditions included a partial load of 50 N·m and a high load of 70 N·m. Data was recorded as the exhaust valve timing was controlled, and this was used to calculate the efficiency of combustion using a heat release, the fuel conversion efficiency, and the pumping loss. Results and the hydrocarbon concentrations in the exhaust gas were compared for each condition. Experiment results confirmed that additional fuel efficiency improvements are possible through exhaust valve timing control at 1,500 rpm and 50 N·m. However, in other operating conditions, fuel efficiency improvements could not be obtained through exhaust valve timing control because cases where the pumping loss and fuel/air mixture slip increased when the exhaust valve timing changed and the fuel efficiency declined.

Prediction of Specific Noise Based on Internal Flow of Forward Curved Fan

  • Sasaki, Soichi;Hayashi, Hidechito;Hatakeyama, Makoto
    • International Journal of Fluid Machinery and Systems
    • /
    • 제2권1호
    • /
    • pp.80-91
    • /
    • 2009
  • In this study, a prediction theory for specific noise that is the overall characteristic of the fan has been proposed. This theory is based on total pressure prediction and broadband noise prediction. The specific noises of two forward curved fans with different number of blades were predicted. The flow around the impeller having 120 blades (MF120) was more biased at a certain positions than the impeller with 40 blades (MF40). An effective domain of the energy conversion of MF40 has extended overall than MF120. The total pressure was affected by the slip factor and pressure loss caused by the vortex flow. The suppression of a major pressure drop by the vortex flow and expansion of the effective domain for energy conversion contributed to an increase in the total pressure of MF40 at the design point. The position of maximum relative velocity was different for each fan. The relative velocity of MF120 was less than that of MF40 due to the deviation angle. The specific noise of MF120 was 2.7 dB less than that of MF40 due to the difference in internal flow. It has been quantitatively estimated that the deceleration in the relative velocity contributed to the improvement in the overall performance.

인공신경망을 이용한 VVVF-유도전동기 시스템의 실시간 운전효율 최적제어 (Neural Network Based On-Line Efficiency Optimization Control of a VVVF-Induction Motor Drive)

  • 이승철;최익;권순학;최주엽;송중호
    • 전력전자학회논문지
    • /
    • 제4권2호
    • /
    • pp.166-174
    • /
    • 1999
  • 최적효율제어를 통한 유도전동기의 효율향상은 에너지 절감측면에서 매우 중요하며 인공신경망을 사용하면 시스템의 특성이 충분히 해석되지 않은 상태에서도 우수한 제어특성을 얻을 수 있다. 본 논문은 유도전동기 구동시스템에서 최적 슬립주파수를 추종하는 실시간 인공신경망 회로를 구성하여 운전효율을 최적화하는 제어방법을 제안한다. 제안된 최적 효율제어기는 인공신경망 제어기에 의해 시스템의 비선형성을 포함하여 전동기의 내부손실이 최소가 되는 운전점을 추종한다. 시뮬레이션과 실험을 통하여 기존의 일정v/f 방식에 비하여 고속 경부하시 경제성 있는 에너지 절감효과를 충분히 확보할 수 있었다.

  • PDF

Retrofitting reinforced concrete beams by bolting steel plates to their sides -Part 2: Transverse interaction and rigid plastic design

  • Oehlers, Deric John;Ahmed, Marfique;Nguyen, Ninh T.;Bradford, Mark Andrew
    • Structural Engineering and Mechanics
    • /
    • 제10권3호
    • /
    • pp.227-243
    • /
    • 2000
  • In a companion paper, tests on bolted side plated beams have shown that side plates can substantially increase the strength of existing reinforced concrete beams with little if any loss of ductility and, furthermore, induce a gradual mode of failure after commencement of concrete crushing. However, it was also shown that transverse interaction between the side plates and the reinforced concrete beam, that is vertical slip and which is a concept unique to side plated beams, is detrimental. Transverse interaction increases the forces on the bolt shear connectors and, hence, weakens the beam. It also reduces the ability of the composite plated beam to yield and, hence, to attain its full flexural capacity. The generic concept of transverse interaction will be described in this paper and the results used to develop a new form of rigid plastic analysis for bolted side plated beams which is illustrated with an application.

Structure and Properties of Polymer Infiltrated Alumina Thick Film via Inkjet Printing Process

  • Jang, Hun-Woo;Koo, Eun-Hae;Hwang, Hae-Jin;Kim, Jong-Hee
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.207-207
    • /
    • 2008
  • Modern industry has focused on processing that produce low- loss dielectric substrates used complex micron-sized devices using tick film technologies such as tape casting and slip casting. However, these processes have inherent disadvantages fabricating high density interconnect with embedded passives for high speed communication electronic devices. Here, we have successfully fabricated porous alumina dielectric layer infiltrated with polymer solution by using inkjet printing process. Alumina suspensions were formulated as dielectric ink that were optimized to use in inkjet process. The layer was confirmed by field emission scanning electron microscope (FE-SEM) for measuring microstructure and volume fraction. In addition, the reaction kinetics and electrical properties were characterized by FT-IR and the impedance analyzer. The volume fraction of alumina in porous dielectric alumina layer is around 70% much higher than that in the conventional process. Furthermore, after infiltration on the dielectric layer using polymer resins such as cyanate ester. Excellent Q factors of the dielectric is about 200 when confirmed by impedance analyzer without any high temperature process.

  • PDF

과급기의 고압력비 원심압축기 공력설계 및 시험평가 (Performance Test and Aerodynamic Design on the High Pressure Ratio Centrifugal Compressor of a Turbocharger)

  • 김홍원;류승협;이근식
    • 한국유체기계학회 논문집
    • /
    • 제17권6호
    • /
    • pp.13-20
    • /
    • 2014
  • It is necessary to design a compressor with high pressure ratio that satisfies the IMO(international maritime organization) NOx emission regulation for the marine diesel engine. Impeller was designed using the modified slip factor with the flow coefficient. The main purpose of this study is to investigate the sensitivity of the compressor performance by the vaned diffuser geometries. The first vaned diffuser type was based on a NACA airfoil, the second was channel diffuser, and the third was conformally transformated configuration of a NACA65(4A10)06 airfoil. The sensitivity of the performance was calculated using a commercial CFD program for three different diffuser geometries. The channel diffuser showed the wide range of operation and higher pressure characteristics, comparing with the others. This is attributed to the flow stability at diffuser. Combined with this results with impeller design, the optimized compressor was designed and verified by the test results.

골다공증 노인 환자의 낙상 관련요인에 관한 연구 (Factors Related to Fall in Elderly Patients with Osteoporosis)

  • 김주연;이영휘;함옥경
    • 성인간호학회지
    • /
    • 제21권2호
    • /
    • pp.257-267
    • /
    • 2009
  • Purpose: The purpose of this study was to identify risk factors of fall and to examine its results among patients aged 60 and over diagnosed with osteoporosis. Methods: A retrospective descriptive survey was conducted with 91 patients admitted in a university hospital in a city. Data were collected using an interview method with a structured questionnaire, and were analyzed using descriptive statistics and multiple logistic regression. Results: In patients with osteoporosis, the intrinsic risk factors of falls were aging (OR = 3.742), gait disturbance (OR = 12.565), taking one or fewer medicine (OR = 7.873), and having two or more diseases (OR = 5.173). The extrinsic risk factors included the use of a bed (OR = 3.093), slippery floors (OR = 12.130), bathroom mat without anti-slip rubber backing (OR = 3.564), and presence of a night light on the passage from the bedroom to the bathroom (OR = 2.980). Conclusion: For the elderly aged over 70 who are most vulnerable to falls, screening tests such as bone mineral density (BMD) should be conducted in health examinations and the risk of fracture caused by osteoporosis should be communicated to the vulnerable elderly. Besides, development of new exercise programs combining weightbearing exercise is needed to prevent bone loss and increase functional activities.

  • PDF

Corrosion effects on tension stiffening behavior of reinforced concrete

  • Shayanfar, M.A.;Ghalehnovi, M.;Safiey, A.
    • Computers and Concrete
    • /
    • 제4권5호
    • /
    • pp.403-424
    • /
    • 2007
  • The investigation of corrosion effects on the tensile behavior of reinforced concrete (RC) members is very important in region prone to high corrosion conditions. In this article, an experimental study concerning corrosion effects on tensile behavior of RC members is presented. For this purpose, a comprehensive experimental program including 58 cylindrical reinforced concrete specimens under various levels of corrosion is conducted. Some of the specimens (44) are located in large tub containing water and salt (5% salt solution); an electrical supplier has been utilized for the accelerated corrosion program. Afterwards, the tensile behavior of the specimens was studied by means of the direct tension tests. For each specimen, the tension stiffening curve is plotted, and their behavior at various load levels is investigated. Average crack spacing, loss of cross-section area due to corrosion, the concrete contribution to the tensile response for different strain levels, and maximum bond stress developed at each corrosion level are studied, and their appropriate relationships are proposed. The main parameters considered in this investigation are: degree of corrosion ($C_w$), reinforcement diameter (d), reinforcement ratio (${\rho}$), clear concrete cover (c), ratio of clear concrete cover to rebar diameter (c/d), and ratio of rebar diameter to reinforcement percentage ($d/{\rho}$).

STRAIN LOCALIZATION IN IRRADIATED MATERIALS

  • Byun, Thaksang;Hashimoto, Naoyuki
    • Nuclear Engineering and Technology
    • /
    • 제38권7호
    • /
    • pp.619-638
    • /
    • 2006
  • Low temperature irradiation can significantly harden metallic materials and often lead to strain localization and ductility loss in deformation. This paper provides a review on the radiation effects on the deformation of metallic materials, focusing on microscopic and macroscopic strain localization phenomena. The types of microscopic strain localization often observed in irradiated materials are dislocation channeling and deformation twinning, in which dislocation glides are evenly distributed and well confined in the narrow bands, usually a fraction of a micron wide. Dislocation channeling is a common strain localization mechanism observed virtually in all irradiated metallic materials with ductility, while deformation twinning is an alternative localization mechanism occurring only in low stacking fault energy(SFE) materials. In some high stacking fault energy materials where cross slip is easy, curved and widening channels can be formed depending on dose and stress state. Irradiation also prompts macroscopic strain localization (or plastic instability). It is shown that the plastic instability stress and true fracture stress are nearly independent of irradiation dose if there is no radiation-induced phase change or embrittlement. A newly proposed plastic Instability criterion is that the metals after irradiation show necking at yield when the yield stress exceeds the dose-independent plastic instability stress. There is no evident relationship between the microscopic and macroscopic strain localizations; which is explained by the long-range back-stress hardening. It is proposed that the microscopic strain localization is a generalized phenomenon occurring at high stress.

Nonlinear response of complex fluids under LAOS(large amplitude oscillatory shear) flow

  • Ahn, Kyung-Hyun;Kyu Hyun;Nam, Jung-Gun;Manfred Wilhelm;Lee, Seung-Jong
    • Korea-Australia Rheology Journal
    • /
    • 제15권2호
    • /
    • pp.97-105
    • /
    • 2003
  • In the previous paper (Hyun et al.,2002), we have investigated the shape of storage modulus (G') and loss modulus (G") of complex fluids under large amplitude oscillatory shear (LAOS) flow. As the strain amplitude increases, owever, the stress curve becomes distorted and some important information may be smothered during data processing. Thus we need to investigate the stress data more precisely and systematically. In this work, we have obtained the stress data using high performance ADC (analog digital converting) card, and investigated the nonlinear response of complex fluids, 4wt% xanthan gum (XG), 2 wt% PVA/ 1 wt% Borax, and 1 wt% hyaluronic acid (HA) solutions, using Fourier transformation (FT) rheology. Comparing the strain signals in time domain with FT parameters in frequency domain, we could illustrate the sensitivity and importance of FT rheology. Diverse and unique stress patterns were observed depending on the material system as well as flow environment. It was found that they are not the outcome of experimental deficiency like wall slip but characteristics of the material system. When nonlinear response of complex fluids is analyzed, the intensity and phase angle of higher harmonic contributions should be considered together, and the shape of the stress signal was found to be strongly dependent upon phase angle.ngle.