STRAIN LOCALIZATION IN IRRADIATED MATERIALS

  • Byun, Thaksang (Materials Science and Technology Division, Oak Ridge National Laboratory) ;
  • Hashimoto, Naoyuki (Department of Applied Science and Engineering, Hokkaido University)
  • Published : 2006.10.31

Abstract

Low temperature irradiation can significantly harden metallic materials and often lead to strain localization and ductility loss in deformation. This paper provides a review on the radiation effects on the deformation of metallic materials, focusing on microscopic and macroscopic strain localization phenomena. The types of microscopic strain localization often observed in irradiated materials are dislocation channeling and deformation twinning, in which dislocation glides are evenly distributed and well confined in the narrow bands, usually a fraction of a micron wide. Dislocation channeling is a common strain localization mechanism observed virtually in all irradiated metallic materials with ductility, while deformation twinning is an alternative localization mechanism occurring only in low stacking fault energy(SFE) materials. In some high stacking fault energy materials where cross slip is easy, curved and widening channels can be formed depending on dose and stress state. Irradiation also prompts macroscopic strain localization (or plastic instability). It is shown that the plastic instability stress and true fracture stress are nearly independent of irradiation dose if there is no radiation-induced phase change or embrittlement. A newly proposed plastic Instability criterion is that the metals after irradiation show necking at yield when the yield stress exceeds the dose-independent plastic instability stress. There is no evident relationship between the microscopic and macroscopic strain localizations; which is explained by the long-range back-stress hardening. It is proposed that the microscopic strain localization is a generalized phenomenon occurring at high stress.

Keywords

References

  1. M.S. Wechsler, 'Dislocation Channeling in Irradiated and Quenched Metals,' The Inhomogeneity of Plastic Deformation, American Society for Metals, pp.19-54 (1971), Metals Park, Ohio
  2. A. Luft, 'Microstructural Processes of Plastic Instabilities in Strengthened Metals,' Progress in Materials Science, 35, 97 (1991) https://doi.org/10.1016/0079-6425(91)90002-B
  3. K. Farrell, T.S. Byun, N. Hashimoto, 'Deformation Mode Maps for Tensile Deformation of Neutron-irradiated Structural Alloys,' J. of Nucl. Mater., 335, 471 (2004) https://doi.org/10.1016/j.jnucmat.2004.08.006
  4. F. A. Smidt, Jr., 'Dislocation Channeling in Irradiated Metals,' NRL-7078, Naval Research Laboratory (1970)
  5. M. J. Makin and F. J. Minter, 'Irradiation Hardening in Cooper and Nickel,' Acta Metall., 8, 691 (1960) https://doi.org/10.1016/0001-6160(60)90200-5
  6. A.G. Greenfield, A. G. F. Wilsdorf, 'Effect of Neutron Irradiation on the Plastic Deformation of Copper Single Crystals,' J. Appl. Phys., 32, 827 (1961) https://doi.org/10.1063/1.1736114
  7. M.J. Makin and J.V. Sharp, 'A Model of Lattice Hardening in Irradiated Copper Crystals with the External Characteristics of Source Hardening,' Physics Stat. Sol., 9, 109 (1965) https://doi.org/10.1002/pssb.19650090114
  8. J.V. Sharp, 'Deformation of Neutron Irradiated Cooper Single Crystals,' Phil. Mag., 16, 77 (1967) https://doi.org/10.1080/14786436708229258
  9. A.J.E. Foreman and J.V. Sharp, 'A Mechanism for Sweeping-up of Loops by Glide Dislocations during Deformation,' Phil. Mag., 19, 931 (1969) https://doi.org/10.1080/14786436908225858
  10. R.P. Tucker, M.S. Wechsler and S.M. Ohr, 'Dislocation Channeling in Neutron-Irradiation Niobium,' J. Appl. Phys., 40, 400 (1969) https://doi.org/10.1063/1.1657068
  11. J.V. Sharp, 'Deformation of Neutron Irradiated Copper Alloys,' Acta Metall., 22, 449 (1974) https://doi.org/10.1016/0001-6160(74)90097-2
  12. Y. Huang, E. Pink, and R.J. Arsenault, 'Radiation Effects on the Yield Stress and Dislocation Channeling in Neutron Irradiated Molybdenum,' Metall. Trans., 5, 271 (1974)
  13. T. Onchi, H. Kayano and Y. Higashiguchi, 'The Inhomogeneous Deformation Behaviour of Neutron Irradiated Zircaloy-2,' J. Nucl. Mater, 88, 226 (1980) https://doi.org/10.1016/0022-3115(80)90278-0
  14. J. Gazda, M. Meshii, H. M. Chung, 'Microstructure of V-4Cr-4Ti Alloy after Low-Temperature Irradiation by Ions and Neutrons, J. of Nucl, Mater., 258-263, 1473 (1998)
  15. S.A. Maloy, M.R. James, W.R. Johnson, T.S. Byun, K. Farrell, M.B. Toloczko, 'Comparison of Fission Neutron and Proton/Spallation Neutron Irradiation Effects on the Tensile Behavior of Type 316 and 304 Stainless Steel,' J. of Nucl. Mater., 318, 283 (2003) https://doi.org/10.1016/S0022-3115(03)00087-4
  16. G.S. Was, J.T. Busby, 'Role of Irradiated Microstructure and Microchemistry in Irradiation-Assisted Stress Corrosion Cracking,' Phil. Mag., 85, 443 (2005) https://doi.org/10.1080/02678370412331320224
  17. B.N. Singh, A.J.E. Foreman, H. Trinkaus, 'Radiation Hardening Revisited: Role of Interacascade Clustering,' J. of Nucl. Mater. 249, 103 (1997) https://doi.org/10.1016/S0022-3115(97)00231-6
  18. B.N. Singh, A. Horsewell, P. Toft, 'Effects of Neutron Irradiation on Microstructure and Mechanical Properties of Pure Iron,' J. Nucl. Mater., 271&272, 97 (1999) https://doi.org/10.1016/S0022-3115(98)00767-3
  19. M. Victoria, N. Baluc, C. Bailat, Y. Dai, M.I Luppo, R. Schaublin, B.N. Singh, 'The Microstructure and Associated Tensile Properties of Irradiated fcc and bcc Metals,' J. Nucl. Mater. 276, 114 (2000) https://doi.org/10.1016/S0022-3115(99)00203-2
  20. C. Bailat, F. Groschel, M. Victoria, 'Deformation Modes of Proton and Neutron Irradiated Stainless Steels,' J. Nucl. Mater. 276, 283 (2000) https://doi.org/10.1016/S0022-3115(99)00222-6
  21. T.S. Byun, K. Farrell, E.H. Lee, J.D. Hunn, L.K. Mansur, 'Strain Hardening and Plastic Instability Properties of Austenitic Stainless Steel after Proton and Neutron Irradiation,' J. of Nucl. Mater., 298, 269 (2001) https://doi.org/10.1016/S0022-3115(01)00651-1
  22. T.A Khraishi, H.M. Zbib, T. D. de la Rubia, and M. Victoria, 'Localized Deformation and Hardening in Irradiated Metals: Three-Dimensional Discrete Dislocation Dynamics Simulations,' Metall. & Mater. Trans. 33B, 285 (2002) https://doi.org/10.1007/s11663-002-0012-7
  23. Hashimoto, T S. Byun, and K. Farrell, 'Microstructural Analysis of Deformation in Neutron-Irradiated fcc Materials,' J. of Nucl. Mater., 351, 295 (2006) https://doi.org/10.1016/j.jnucmat.2006.02.032
  24. T.S. Byun, N. Hashimoto, 'Strain Hardening and Long Range Internal Stress in the Localized Deformation of Irradiated Polycrystalline Metals,' J. of Nucl. Mater., 354, 123 (2006) https://doi.org/10.1016/j.jnucmat.2006.02.099
  25. L.K. Mansur, A.F. Rowcliffe, R.K. Nanstad, S.J. ZinkIe, W.R. Corwin, R.E. Stoller, 'Materials Needs for Fusion, Generation Ⅳ Fission Reactors and Spallation Neutron Sources-Similarities and Differences,' J. of Nucl. Mater., 329, 166 (2004) https://doi.org/10.1016/j.jnucmat.2004.04.016
  26. S.G. Song, J.I. Cole and S.M. Bruemmer, 'Formation of Partial Dislocations During Intersection of Glide Dislocations with Frank Loops in f.c.c Lattices,' Acta Mater., 45, 501 (1997) https://doi.org/10.1016/S1359-6454(96)00206-6
  27. E. Johnson and P.B. Hirsch, 'In Situ Straining in the HVEM of Neutron-Irradiated Cooper Crystals,' Phil. Mag. A, 43, 157 (1981) https://doi.org/10.1080/01418618108239398
  28. M. Suzuki, A Fujimura, A. Sato, J. Nagakawa, N. Yamamoto and H. Shiraishi, 'In Situ Deformation of Proton-Irradiated Molybdenum in a High-Voltage Electron Microscope,' Phil. Mag. A, 64, 395 (1991) https://doi.org/10.1080/01418619108221194
  29. M. Suzuki, A Sato, T. Mori, J. Nagakawa, N. Yamamoto, H. Shiraishi, 'In Situ Deformation and Unfaulting of Interstitial Loops in Proton-Irradiated Steels,' Phil. Mag. A, 65, 1309 (1992) https://doi.org/10.1080/01418619208205606
  30. Y. Matsukawa, Y.N. Osetsky, R.E. Stoller, S.J. Zinkle, 'Destruction Processes of Large Stacking Fault Tetrahedra Induced by Direct Interaction with Gliding Dislocations,' J. of Nucl. Mater, 351, 285 (2006) https://doi.org/10.1016/j.jnucmat.2006.02.003
  31. J.S. Robach, I.M. Robertson, B.D. Wirth and A. Arsenlis, 'In-Situ Transmission Electron Microscopy Observation and Molecular Dynamics Simulations of Dislocation-Defect Interactions in Ion-Irradiated Copper,' Phil. Mag., 83, 955 (2003) https://doi.org/10.1080/0141861031000065329
  32. T.D. de la Rubia, H.M. Zbib, T.A. Khraishi, B.D. Wirth, M. Victoria and M.J. Caturla, 'Multiscale Modeling Plastic Flow Localization in Irradiated Materials,' Nature, 406, 871 (2000) https://doi.org/10.1038/35022544
  33. M. Hiratani, H.M. Zbib, and B.D. Wirth, 'Interaction of Glissile Dislocations with Perfect and Truncated Stacking-Fault Tetrahedra in Irradiated Metals,' Phil. Mag. A, 82, 2709 (2002) https://doi.org/10.1080/01418610208240062
  34. D.J. Bacon, Y.N. Osetsky, Z. Rong, 'Computer Simulation of Reactions between an Edge Dislocation and Glissile Self-Interstitial Clusters in Iron,' Phil. Mag., 86, 3921 (2006) https://doi.org/10.1080/14786430600570527
  35. Y.N. Osetsky, D. Rodney, D.J. Bacon, 'Atomic-Scale Study of Dislocation-Stacking Fault Tetrahedron Interactions. Part I: Mechanisms,' Phil. Mag., 86, 2295 (2006) https://doi.org/10.1080/14786430500513783
  36. N. Hashimoto, T.S. Byun, K. Farrell, S.J. Zinkie, 'Deformation Microstructure of Neutron-Irradiated Pure Polycrystalline Vanadium', J. of Nucl. Mater., 336, 225 (2005) https://doi.org/10.1016/j.jnucmat.2004.09.017
  37. T.S. Byun, N. Hashimoto, and K. Farrell, 'Deformation Mode Map of Irradiated 316 Stainless Steel in True Stress-Dose Space', J. of Nucl. Mater., 351, 303 (2005) https://doi.org/10.1016/j.jnucmat.2006.02.033
  38. T.S. Byun, N. Hashimoto, K. Farrell, E.H. Lee, 'Characteristics of Microscopic Strain Localization in Irradiated 316 Stainless Steels and Pure Vanadium,' J. of Nucl. Mater., 349, 251 (2006) https://doi.org/10.1016/j.jnucmat.2005.10.011
  39. Y. Dai, X. Jia, J.C. Chen, W.F. Sommer, M. Victoria, G.S. Bauer, 'Microstructure of Both As-Irradiated and Deformed 304 Stainless Steel Irradiated with 800 MeV Protons,' J. Nucl. Mater. 296, 174 (2001) https://doi.org/10.1016/S0022-3115(01)00565-7
  40. C. Bailat, A. Almazouzi, N. Baluc, R. Schaublin, F. Groschel, M. Victoria, 'The Effects of Irradiation and Testing Temperature on Tensile Behavior of Stainless Steel,' J. Nucl. Mater. 283, 446 (2000) https://doi.org/10.1016/S0022-3115(00)00083-0
  41. E.H. Lee, J.D. Hunn, T.S. Byun, and L.K. Mansur, 'Effects of Helium on Radiation-Induced Defect Microstructure in Austenitic Stainless Steel,' J. of Nucl. Mater., 280, 18 (2000) https://doi.org/10.1016/S0022-3115(00)00038-6
  42. E.H. Lee, T.S. Byun, J.D. Hunn, M.H. Yoo, K. Farrell and L.K. Mansur, 'On the Origin of Deformation Microstructures in Austenitic Stainless Steel: Part Ⅰ- Microstructures,' Acta Mater., 49, 3269 (2001) https://doi.org/10.1016/S1359-6454(01)00193-8
  43. E.H. Lee, M.H. Yoo, T.S. Byun, J.D. Hunn, K. Farrell and L.K. Mansur, 'On the Origin of Deformation Microstructures in Austenitic Stainless Steel: Part Ⅱ-Mechanisms,' Acta Mater., 49, 3277 (2001) https://doi.org/10.1016/S1359-6454(01)00194-X
  44. T.S. Byun, E.H. Lee, J.D. Hunn, K. Farrell, L.K. Mansur, 'Characterization of Plastic Deformation in a Disk Bend Method,' J. of Nucl. Mater., 294, 256 (2001) https://doi.org/10.1016/S0022-3115(01)00484-6
  45. T.S. Byun, 'On the Stress Dependence of Partial Dislocation Separation and Deformation Microstructure in Austenitic Stainless Steels,' Acta Mater., 51, 3063 (2003) https://doi.org/10.1016/S1359-6454(03)00117-4
  46. T.S. Byun, E.H. Lee, and J.D. Hunn, 'Plastic Deformation in 316LN Stainless Steel- Characterization of Deformation Microstructures,' J. of Nucl. Mater., 321, 29 (2003) https://doi.org/10.1016/S0022-3115(03)00195-8
  47. T.S. Byun and K. Farrell, 'Plastic Instability in Polycrystalline Metals after Low Temperature Irradiation,' Acta Mater., 52, 1597 (2004) https://doi.org/10.1016/j.actamat.2003.12.023
  48. T.S. Byun and K. Farrell, 'Irradiation Hardening Behavior of Polycrystalline Metals after Low Temperature Irradiation,' J. of Nucl. Mater., 326, 86 (2004) https://doi.org/10.1016/j.jnucmat.2003.12.012
  49. T. S. Byun, K. Farrell, and N. Hashimoto, 'Plastic Instability Behavior of bcc and hcp Metals after Low Temperature Neutron Irradiation,' J. of Nucl. Mater., 329-333, 998 (2004) https://doi.org/10.1016/j.jnucmat.2004.04.071
  50. T. S. Byun, N. Hashimoto, K. Farrell, 'Temperature Dependence of Strain Hardening and Plastic Instability Behaviors in Austenitic Stainless Steels,' Acta Mater., 52, 3889 (2004) https://doi.org/10.1016/j.actamat.2004.05.003
  51. T .S. Byun, 'Dose Dependence of True Stress Parameters in Irradiated bcc, fcc, and hcp Metals.' Wechsler Symposium on Radiation Effects, Deformation and Phase Transformation in Metals and Ceramics in 2006 TMS Annual Meeting, San Antonio, TX, USA, March 12-16, 2006. (To be published in J. of Nucl. Mater.) https://doi.org/10.1016/j.jnucmat.2006.12.014
  52. A.H. Cottrell, 'Vacancies and Other Point Defects in Metals and Alloys,' The Institute of Metals, London (1958)
  53. R.W. Hertzberg, Deformation and Fracture Mechanics of Engineering Materials, 3rd Ed., John Wiley and Sons, Inc., pp.67-80 (1989), New York
  54. J.P. Hirth, J. Lathe, Theory of dislocations, McGraw-Hill Book Co, (1968), New York
  55. M.A. Meyers, K.K. Chawla, Mechanical behavior of materials, Prentice-Hall, Inc., (1998), Upper Saddle River, NJ
  56. J.W. Christian, S. Mahajan, 'Deformation Twinning,' Prog. In Mater. Sci., 39, 1 (1995) https://doi.org/10.1016/0079-6425(94)00007-7
  57. S.M. Copley, RH. Kear, 'The Dependence of the Width of a Dissociated Dislocation on Dislocation Velocity,' Acta Metall., 16, 227 (1968) https://doi.org/10.1016/0001-6160(68)90118-1
  58. B.H. Sencer, S.A. Maloy, G.T. Gray Ⅲ, 'The Influence of Explosive-Driven Shock Prestraing at 35 GPa and High Deformation on the Structur/Property Behavior of 316L Austenitic Stainless Steel,' Metall. Mater. Trans., 36A, 1825, (2005) https://doi.org/10.1007/s11661-005-0046-y
  59. D. Goodchild, W.T. Roberts, D.V. Wilson, 'Plastic Deformation and Phase Transformation in Textured Austenitic Stainless Steel,' Acta Metall, 18, 1137 (1970) https://doi.org/10.1016/0001-6160(70)90104-5
  60. H.J. Kestenbach, 'The Effect of Applied Stress on Partial Dislocation Separation and Dislocation Structure in Austenitic Stainless Steel,' Phil. Mag. 36, 1509 (1977) https://doi.org/10.1080/14786437708238531
  61. Z. Jin, T.R. Bieler, 'A Numerical Force and Stress Analysis on a Thin Twin Layer in TiAl,' Phil. Mag. A, 72, 1201 (1995) https://doi.org/10.1080/01418619508236251
  62. Z. Jin, T.R. Bieler, 'An In-Situ Observation of Mechanical Twin Nucleation and Propagation in TiAl,' Phil. Mag. A, 71, 925 (1995) https://doi.org/10.1080/01418619508236229
  63. S.M. Ohr, 'Work Hardening Characteristics of Neutron Irradiated Iron,' Scripta Metall., 2, 213 (1968) https://doi.org/10.1016/0036-9748(68)90230-5
  64. E.V. van Osch, M.I. de Vries, 'Irradiation Hardening of V-4Cr-4Ti,' J. Nucl. Mater., 272-272, 162 (1999)
  65. R.J. DiMelfi, D.E. Alexander, L.B. Rehn, 'Post-Yield Strain Hardening Behavior as a Clue to Understanding Irradiation Hardening,' J. Nucl. Mater., 252, 171 (1998) https://doi.org/10.1016/S0022-3115(97)00316-4
  66. I.L. Mogford, D. Hull, 'Effect of Temperature and Neutron Irradiation on Yield and Work Hardening in Iron,' J. Iron Steel. Inst., 201, 55 (1963)
  67. U.F. Kocks, H. Mecking, 'Physics and Phenomenology of Strain Hardening: the FCC Case,' Progress in Materials Science, 48, 171, (2003) https://doi.org/10.1016/S0079-6425(02)00003-8
  68. T.S. Byun, N. Hashimoto, 'Strain Hardening during Mechanical Twinning and Dislocation Channeling in Irradiated 316 Stainless Steels,' 23rd ASTM Symposium on Effects of Radiation on Materials, San Jose, CA, June 13-15, 2006
  69. Z.S. Basinski and P.J. Jackson, 'The Effect of Extraneous Deformation on Strain Hardening in Cu Single Crystals,' Appl. Phys. Lett., 6,148 (1965) https://doi.org/10.1063/1.1754209
  70. C. Ritschel, A. Luft, and D. Schulze, 'On the Change of Dislocation Structure during Post-Deformation of Cold Worked Molybdenum Single Crystal at Elevated Temperature,' Kristall und Technik., 13, 791 (1978) https://doi.org/10.1002/crat.19780130709
  71. B. Brenner and A. Luft, 'The mechanism of Work Softening in Cold-Worked Molybdenum Polycrystals at an Elevated Temperature,' Mater. Sci. & Engi., 52, 229 (1982) https://doi.org/10.1016/0025-5416(82)90150-1
  72. T. Mori and M. Meshii, 'Morphology of Plasticity and Dislocation Kinetics in Quenched Aluminum,' Trans. JIM, 9, 96 (1968).
  73. T. Mori and M. Meshii, 'Plastic Deformation of Quench-Hardened Aluminum Single Crystals,' Acta Metall., 17,167 (1969) https://doi.org/10.1016/0001-6160(69)90137-0